20 research outputs found

    Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles

    Full text link
    A {\em total coloring} of a graph GG is an assignment of colors to the vertices and the edges of GG such that every pair of adjacent/incident elements receive distinct colors. The {\em total chromatic number} of a graph GG, denoted by \chiup''(G), is the minimum number of colors in a total coloring of GG. The well-known Total Coloring Conjecture (TCC) says that every graph with maximum degree Δ\Delta admits a total coloring with at most Δ+2\Delta + 2 colors. A graph is {\em 11-toroidal} if it can be drawn in torus such that every edge crosses at most one other edge. In this paper, we investigate the total coloring of 11-toroidal graphs, and prove that the TCC holds for the 11-toroidal graphs with maximum degree at least~1111 and some restrictions on the triangles. Consequently, if GG is a 11-toroidal graph with maximum degree Δ\Delta at least~1111 and without adjacent triangles, then GG admits a total coloring with at most Δ+2\Delta + 2 colors.Comment: 10 page

    Intersection Graphs of Rays and Grounded Segments

    Get PDF
    We consider several classes of intersection graphs of line segments in the plane and prove new equality and separation results between those classes. In particular, we show that: (1) intersection graphs of grounded segments and intersection graphs of downward rays form the same graph class, (2) not every intersection graph of rays is an intersection graph of downward rays, and (3) not every intersection graph of rays is an outer segment graph. The first result answers an open problem posed by Cabello and Jej\v{c}i\v{c}. The third result confirms a conjecture by Cabello. We thereby completely elucidate the remaining open questions on the containment relations between these classes of segment graphs. We further characterize the complexity of the recognition problems for the classes of outer segment, grounded segment, and ray intersection graphs. We prove that these recognition problems are complete for the existential theory of the reals. This holds even if a 1-string realization is given as additional input.Comment: 16 pages 12 Figure

    Between proper and strong edge-colorings of subcubic graphs

    Full text link
    In a proper edge-coloring the edges of every color form a matching. A matching is induced if the end-vertices of its edges induce a matching. A strong edge-coloring is an edge-coloring in which the edges of every color form an induced matching. We consider intermediate types of edge-colorings, where edges of some colors are allowed to form matchings, and the remaining form induced matchings. Our research is motivated by the conjecture proposed in a recent paper of Gastineau and Togni on S-packing edge-colorings (On S-packing edge-colorings of cubic graphs, Discrete Appl. Math. 259 (2019), 63-75) asserting that by allowing three additional induced matchings, one is able to save one matching color. We prove that every graph with maximum degree 3 can be decomposed into one matching and at most 8 induced matchings, and two matchings and at most 5 induced matchings. We also show that if a graph is in class I, the number of induced matchings can be decreased by one, hence confirming the above-mentioned conjecture for class I graphs

    The Maximum-Weight Traveling Salesman Problem in Finite-Dimensional Real Spaces

    No full text

    On Chromatic Number of Colored Mixed Graphs

    No full text
    An (m, n)-colored mixed graph G is a graph with its arcs having one of the m different colors and edges having one of the n different colors. A homomorphism f of an (m, n)-colored mixed graph G to an (m, n)-colored mixed graph H is a vertex mapping such that if uv is an arc (edge) of color c in G, then f (u)f (v) is an arc (edge) of color c in H. The (m,n)-colored mixed chromatic number x((m,n))(G) of an (m, n)-colored mixed graph G is the order (number of vertices) of a smallest homomorphic image of G. This notion was introduced by Nektfil and Raspaud (2000, J. Combin. Theory, Ser. B 80, 147-155). They showed that x((m,n))(G) <= k(2m n)(k-1) where G is a acyclic k-colorable graph. We prove the tightness of this bound. We also show that the acyclic chromatic number of a graph is bounded by k(2) k(2+) inverted left perpedicular log((2m+n)) log((2m+n)) k inverted right perpendicular if its (m, n)-colored mixed chromatic number is at most k. Furthermore, using probabilistic method, we show that for connected graphs with maximum degree its (m, n)-colored mixed chromatic number is at most 2(Delta-1)(2m+n) (2m + n)(Delta-min(2m+m3)+2) In particular, the last result directly improves the upper bound of 2 Delta(2)2(Delta) oriented chromatic number of graphs with maximum degree Delta, obtained by Kostochka et al. J. Graph Theory 24, 331-340) to 2(Delta-1)(2)2(Delta). We also show that there exists a connected graph with maximum degree Delta and (m, n)-colored mixed chromatic number at least (2m + n)(Delta/2)

    Chromatic Number, Induced Cycles, and Non-separating Cycles

    No full text
    corecore