16 research outputs found
Phonons in a one-dimensional microfluidic crystal
The development of a general theoretical framework for describing the
behaviour of a crystal driven far from equilibrium has proved difficult1.
Microfluidic crystals, formed by the introduction of droplets of immiscible
fluid into a liquid-filled channel, provide a convenient means to explore and
develop models to describe non-equilibrium dynamics2, 3, 4, 5, 6, 7, 8, 9, 10,
11. Owing to the fact that these systems operate at low Reynolds number (Re),
in which viscous dissipation of energy dominates inertial effects, vibrations
are expected to be over-damped and contribute little to their dynamics12, 13,
14. Against such expectations, we report the emergence of collective normal
vibrational modes (equivalent to acoustic 'phonons') in a one-dimensional
microfluidic crystal of water-in-oil droplets at Reapprox10-4. These phonons
propagate at an ultra-low sound velocity of approx100 mum s-1 and frequencies
of a few hertz, exhibit unusual dispersion relations markedly different to
those of harmonic crystals, and give rise to a variety of crystal instabilities
that could have implications for the design of commercial microfluidic systems.
First-principles theory shows that these phonons are an outcome of the
symmetry-breaking flow field that induces long-range inter-droplet
interactions, similar in nature to those observed in many other systems
including dusty plasma crystals15, 16, vortices in superconductors17, 18,
active membranes19 and nucleoprotein filaments20.Comment: https://www.weizmann.ac.il/complex/tlusty/papers/NaturePhys2006.pd
Experimental study of the nonreciprocal effective interactions between microparticles in an anisotropic plasma
Reactive optical matter: light-induced motility in electrodynamically asymmetric nanoscale scatterers
From Newton’s third law, which is known as the principle of actio et reactio1, we expect the forces between interacting particles to be equal and opposite for closed systems. Otherwise, “nonreciprocal” forces can arise.2 This has been shown theoretically in the interaction between dissimilar optically trapped particles that are mediated by an external field.3 As a result, despite the incident external field not having a transverse component of momentum, the particle pair experiences a force in a direction that is transverse to the light propagation direction.3,4 In this letter, we directly measure the net nonreciprocal forces in electrodynamically interacting asymmetric nanoparticle dimers and nanoparticle structures that are illuminated by plane waves and confined to pseudo one-dimensional geometries. We show via electrodynamic theory and simulations that interparticle interactions cause asymmetric scattering from heterodimers. Therefore, the putative nonreciprocal forces are actually a consequence of momentum conservation. Our study demonstrates that asymmetric scatterers exhibit directed motion due to the breakdown of mirror symmetry in their electrodynamic interactions with external fields
Direct observation of particle interactions and clustering in charged granular streams
Biological and Soft Matter Physic
