45 research outputs found

    Epitope Density Influences CD8+ Memory T Cell Differentiation

    Get PDF
    The generation of long-lived memory T cells is critical for successful vaccination but the factors controlling their differentiation are still poorly defined. We tested the hypothesis that the strength of T cell receptor (TCR) signaling contributed to memory CD8(+) T cell generation.We manipulated the density of antigenic epitope presented by dendritic cells to mouse naΓ―ve CD8(+) T cells, without varying TCR affinity. Our results show that a two-fold decrease in antigen dose selectively affects memory CD8(+) T cell generation without influencing T cell expansion and acquisition of effector functions. Moreover, we show that low antigen dose alters the duration of the interaction between T cells and dendritic cells and finely tunes the expression level of the transcription factors Eomes and Bcl6. Furthermore, we demonstrate that priming with higher epitope density results in a 2-fold decrease in the expression of Neuron-derived orphan nuclear receptor 1 (Nor-1) and this correlates with a lower level of conversion of Bcl-2 into a pro-apoptotic molecule and an increased number of memory T cells.Our results show that the amount of antigen encountered by naΓ―ve CD8(+) T cells following immunization with dendritic cells does not influence the generation of functional effector CD8(+) T cells but rather the number of CD8(+) memory T cells that persist in the host. Our data support a model where antigenic epitope density sensed by CD8(+) T cells at priming influences memory generation by modulating Bcl6, Eomes and Nor-1 expression

    Much Ado About the TPP’s Effect on Pharmaceuticals

    Get PDF
    Ocular antigens are sequestered behind the blood-retina barrier and the ocular environment protects ocular tissues from autoimmune attack. The signals required to activate autoreactive T cells and allow them to cause disease in the eye remain in part unclear. In particular, the consequences of peripheral presentation of ocular antigens are not fully understood. We examined peripheral expression and presentation of ocular neo-self-antigen in transgenic mice expressing hen egg lysozyme (HEL) under a retina-specific promoter. High levels of HEL were expressed in the eye compared to low expression throughout the lymphoid system. Adoptively transferred naΓ―ve HEL-specific CD4+ T cells proliferated in the eye draining lymph nodes, but did not induce uveitis. By contrast, systemic infection with a murine cytomegalovirus (MCMV) engineered to express HEL induced extensive proliferation of transferred naΓ―ve CD4+ T cells, and significant uveoretinitis. In this model, wild-type MCMV, lacking HEL, did not induce overt uveitis, suggesting that disease is mediated by antigen-specific peripherally activated CD4+ T cells that infiltrate the retina. Our results demonstrate that retinal antigen is presented to T cells in the periphery under physiological conditions. However, when the same antigen is presented during viral infection, antigen-specific T cells access the retina and autoimmune uveitis ensues

    Human Th1 Cells That Express CD300a Are Polyfunctional and After Stimulation Up-Regulate the T-Box Transcription Factor Eomesodermin

    Get PDF
    Human naΓ―ve CD4 T cells express low levels of the immunomodulatory receptor CD300a, whereas effector/memory CD4 cells can be either CD300a+ or CD300aβˆ’. This suggested that CD300a expression could define a specific subset within the effector/memory CD4 T cell subpopulations. In fact, ex vivo analysis of the IFN-Ξ³ producing CD4 T cells showed that they are enriched in the CD300a+ subset. Moreover, stimulated CD4 T cells producing TNF-Ξ± and IL-2 besides IFN-Ξ³ (polyfunctional) are predominantly CD300a+. In addition to producing markedly higher levels of Th1-associated cytokines, the stimulated CD300a+ CD4 T cells are distinguished by a striking up-regulation of the T-box transcription factor eomesodermin (Eomes), whereas T-bet is up-regulated in both CD300a+ and CD300aβˆ’ activated CD4 T cells to similar levels. The pleiotropic cytokine TGF-Ξ²1 has a determinant role in dictating the development of this Th1 subset, as its presence inhibits the expression of CD300a and down-regulates the expression of Eomes and IFN-Ξ³. We conclude that CD300a+ human Th1 cells tend to be polyfunctional and after stimulation up-regulate Eomes

    CD152 (CTLA-4) Determines CD4 T Cell Migration In Vitro and In Vivo

    Get PDF
    BACKGROUND:Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo. CONCLUSIONS/SIGNIFICANCE:We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge

    The tyrosine kinase Itk suppresses CD8+ memory T cell development in response to bacterial infection

    No full text
    Vaccine efficacy depends on strong long-term development of immune memory and the formation of memory CD8(+) T cells is critical for recall responses to infection. Upon antigen recognition by naΓ―ve T cells, the strength of the TcR signal influences the subsequent effector and memory cells differentiation. Here, we have examined the role of Itk, a tyrosine kinase critical for TcR signaling, in CD8(+) effector and memory T cell differentiation during Listeria monocytogenes infection. We found that the reduced TcR signal strength in Itk deficient naΓ―ve CD8(+) T cells enhances the generation of memory T cells during infection. This is accompanied by increased early Eomesodermin, IL-7RΞ± expression and memory precursor effector cells. Furthermore, Itk is required for optimal cytokine production in responding primary effector cells, but not secondary memory responses. Our data suggests that Itk-mediated signals control the expression of Eomesodermin and IL-7RΞ±, thus regulating the development of memory CD8(+) T cells, but not subsequent response of memory cells
    corecore