63 research outputs found

    Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA)

    Get PDF
    BACKGROUND: Seasonal changes in pore water and sediment redox geochemistry have been observed in many near-surface sediments. Such changes have the potential to strongly influence trace metal distribution and thus create seasonal fluctuations in metal mobility and bioavailability. RESULTS: Seasonal trends in pore water and sediment geochemistry are assessed in the upper 50 cm of littoral kettle lake sediments. Pore waters are always redox stratified, with the least compressed redox stratification observed during fall and the most compressed redox stratification observed during summer. A 2-step sequential sediment extraction yields much more Fe in the first step, targeted at amorphous Fe(III) (hydr)oxides (AEF), then in the second step, which targets Fe(II) monosulfides. Fe extracted in the second step is relatively invariant with depth or season. In contrast, AEF decreases with sediment depth, and is seasonally variable, in agreement with changes in redox stratification inferred from pore water profiles. A 5-step Tessier extraction scheme was used to assess metal association with operationally-defined exchangeable, carbonate, iron and manganese oxide (FMO), organic/sulfide and microwave-digestible residual fractions in cores collected during winter and spring. Distribution of metals in these two seasons is similar. Co, As, Cd, and U concentrations approach detection limits. Fe, Cu and Pb are mostly associated with the organics/sulfides fraction. Cr and Zn are mostly associated with FMO. Mn is primarily associated with carbonates, and Co is nearly equally distributed between the FMO and organics/sulfide fractions. CONCLUSION: This study clearly demonstrates that near-surface lake sediment pore water redox stratification and associated solid phase geochemistry vary significantly with season. This has important ramifications for seasonal changes in the bioavailability and mobility of trace elements. Without rate measurements, it is not possible to quantify the contribution of various processes to natural organic matter degradation. However, the pore water and solid phase data suggest that iron reduction and sulfate reduction are the dominant pathways in the upper 50 cm of these sediments

    Feasibility Study of the Electrokinetic Remediation of a Mercury-Polluted Soil

    No full text
    This chapter is focused on the study of electroremediation of heavy metals from a real soil. Specifically, the case of the study was a soil from Almaden mining district, with a very high mercury concentration. The risk assessment of heavy metals depends on the mobility and bioavailability and not only on the total concentration. Therefore, this study evaluates the distribution of mercury into different fractions before and after the electrokinetic treatment. The electrokinetic experiments were performed in two operating scales that differ in more than two orders of magnitude. The results for both scales are consistent with the predictions of simple models, so it can be assumed that they are useful for the evaluation of a full-scale implementation. Two enhancing agents were studied in the application of electrokinetic process according to the mercury distribution in BCR fractions (Community Bureau of Reference). First, iodide was applied as complexing agent, and it was found that after treatment the most mobile fraction of mercury increased. Thus, to remove this mobile mercury fraction, electroremediation experiments were done with nitric acid as enhancing agent
    • …
    corecore