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Abstract The effect of vacuum polarization of charged
massive fermions in an Aharonov–Bohm (AB) potential in 2
+ 1 dimensions is investigated. The causal Green function of
the Dirac equation with the AB potential is represented via
the regular and irregular solutions of the two-dimensional
radial Dirac equation. It is shown that the vacuum current
density contains the contribution from free filled states of
the negative energy continuum as well as that from a bound
unfilled state, which can emerge in the above background
due to the interaction of the fermion’s spin magnetic moment
with the AB magnetic field, while the induced charge den-
sity contains only the contribution from the bound state. The
expressions for the vacuum charge and induced current den-
sities are obtained (recovered for massless fermions) for the
graphene in the field of infinitesimally thin solenoid perpen-
dicular to the plane of a sample. We also find the bound state
energy as a function of magnetic flux, fermion spin, and the
radius of solenoid, and we discuss the role of the so-called
self-adjoint extension parameter and determine it in terms of
the physics of the problem.

1 Introduction

Quantum systems of relativistic fermions in external fields
in 2 + 1 dimensions attract considerable interest, which is
related to the possibility of applying the results obtained
for simplified models to the study of fundamental physical
phenomena such as the Aharonov–Bohm and quantum Hall
effects [1,2], as well as high-temperature superconductivity
[3]. When the external field configuration has the cylindrical
symmetry, a natural assumption is that the relevant quantum-
mechanical system is invariant along the symmetry (z) axis
and the system then becomes essentially two-dimensional in
the xy plane. Solutions of the Dirac equation with the AB
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potential in 2 + 1 dimensions have been used to describe
scattering of spin-polarized electrons by infinitesimally thin
solenoid [4] as well as the behavior of fermions in the field
of a cosmic string [5].

Important physical quantities are the vacuum charge and
current densities induced by the background field. Vacuum
polarization effects in the (2 + 1)-dimensional quantum elec-
trodynamics with a homogeneous magnetic field and with a
nonzero fermion density were studied in [6,7].

Interest to two-dimensional fermion systems with the
energy spectrum governed by Dirac Hamiltonian was revived
in connection with the problems of graphene (see, e.g., [8–
11]). In graphene, the electrons near the Fermi surface can
be described in terms of an effective Lorentz-invariant the-
ory, with their kinetic energy determined by Dirac’s disper-
sion law, and the dynamics of the electron at low energies
is described by the Dirac equation in 2 + 1 dimensions for
a zero-mass fermion [9]. It should be noted that, while a
description of electron states in graphene in [12–14] was
based on the Dirac equation for massless fermions, Ref. [15]
has shown that the massive case can also be created.

At the same time, the effective fine structure constant
in graphene is large, which leads to a new possibility for
studying quantum electrodynamics in the strong-coupling
regime. Charged impurity screening in graphene in terms
of vacuum polarization was investigated in [14,16–19]. The
induced vacuum current in graphene in the field of a solenoid
was investigated in [20] and a wonderful phenomenon was
revealed: the induced current turns out to be a finite periodic
function of the magnetic flux. Induced vacuum condensates
such as the induced charge density and current (and other
ones) for massless fermions in the background of a singu-
lar magnetic vortex in (2 + 1)-dimensional space-time were
investigated in [21,22].

The Dirac equation with the AB potential is governed by a
(singular) Hamiltonian that requires the supplementary def-
inition in order for it to be treated as a self-adjoint quantum-
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mechanical operator. Based on the form asymmetry self-
adjoint extension method [23,24], the most relevant physical
quantities, such as energy spectrum, wave functions, and the
self-adjoint extension parameter, were determined for some
quantum systems with the AB potential by applying the so-
called self-adjoint boundary conditions in [25–28]. It is use-
ful to note that the self-adjoint extension regularization was
applied for two-dimensional models in quantum field theory
(see [29,30]). As a result some uncertainty appears in the pre-
diction of physical quantities [29,30]. Essentially, a physical
interpretation of self-adjoint extensions is a purely physical
problem and each extension can (and must) be understood
through an appropriate physical regularization [24].

In the present paper, we use the physical regularization
method for constructing the fermion wave function and deter-
mining the energy in a bound state as a function of magnetic
flux and fermion spin. We introduce a small parameter R,
which, if we imagine a real solenoid, is the finite radius of
this solenoid (see, for instance, [4,31,32].

We shall adopt the units where c = h̄ = 1.

2 Solutions to the Dirac equation
in an Aharonov–Bohm field

The space of particle quantum states in two spatial dimen-
sions is the Hilbert space H = L2(R2) of square-integrable
functions �(r), r = (x, y) with the scalar product

(�1, �2) =
∫
�

†
1 (r)�2(r)dr, dr = dxdy. (1)

The Dirac equation for a fermion in a given external field
can be obtained just as in 3 + 1 dimensions. The Dirac γ μ-
matrix algebra is known to be representable in terms of the
two-dimensional Pauli matrices σ j :

γ 0 = σ3, γ 1 = isσ1, γ 2 = iσ2 (2)

and the parameter s = ±1 can be introduced to label two
types of fermions in accordance with the signature of the two-
dimensional Dirac matrices [33] and is applied to the char-
acterization of the two states of the fermion spin (spin “up”
and “down”) [4]. Then the Dirac Hamiltonian for a fermion
of the mass m and charge e = −e0 < 0 in an Aharonov–
Bohm potential A0 = 0, Ar = 0, Aϕ = B/r, r =√

x2 + y2, ϕ = arctan(y/x) is

HD = σ1 P2 − sσ2 P1 + σ3m, (3)

where Pμ = −i∂μ−eAμ is the generalized fermion momen-
tum operator (a three-vector). The Hamiltonian (3) should
be defined as a self-adjoint operator in the Hilbert space of
square-integrable two-spinors �(r) with the scalar product
(1). The total angular momentum J ≡ Lz + sσ3/2, where
Lz ≡ −i∂/∂ϕ, commutes with HD .

In the real physical space, because of the existence of finite
magnetic flux inside the solenoid� = 2πB the term includ-
ing the spin parameter appears in the form of an additional
delta-function interaction of the spin with the magnetic field
of the solenoid,

H = (0, 0, H) = ∇ × A = Bπδ(r) (4)

in the Dirac equation squared. The additional potential

− seB
δ(r)

r
(5)

will be taken into account by boundary conditions. Such a
kind of point interaction also appears in several Aharonov–
Bohm-like problems [34–37].

The eigenfunctions of the Hamiltonian (3) are (see [38])

�(t, r) = 1√
2π

(
f1(r)
f2(r)eisϕ

)
exp(−i Et + ilϕ), (6)

where E is the fermion energy and l is an integer. The wave
function �(t, r) is an eigenfunction of the operator J with
eigenvalue j = l + s/2. Taking into account the easily
checked relations

s P1 ± i P2 = −ie±isϕ
[

s
∂

∂r
±

(
i

r

∂

∂ϕ
− μ

r

)]
, (7)

where μ ≡ e0 B, we reduce the problem to that for the radial
Hamiltonian ȟ in the Hilbert space of doublets F(r) square-
integrable on the half-line:

ȟF = E F, F =
(

f1(r)
f2(r)

)
, (8)

where

ȟ

(
f1(r)
f2(r)

)

=
[

m sd/dr + (l + μ)/r
−sd/dr + (l + μ+ s)/r −m

]

×
(

f1(r)
f2(r)

)
= E

(
f1(r)
f2(r)

)
(9)

in the range r > 0. Eliminating, for instance, f2(r) we
derive the differential equation for f1(r) and then the lower
(“small”) component of doublet is found from the relation

f2(r) = − 1

E + m

(
s

d f1

dr
− l + μ

r
f1

)
. (10)

Then for E2 −m2 > 0 the radial solutions can be written via
the Bessel functions:

F(r, E) =
(

f1

f2

)
= A

(√
E + m Jν(pr)

±√
E − m Jν±s(pr)

)
. (11)

Here A is a constant, ν = |l + μ|, p = √
E2 − m2 and the

upper (lower) signs should be taken for l+μ > 0 (l+μ < 0).
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Let us represent

μ = [μ] + β ≡ n + β, (12)

where n denotes the largest integer ≤ μ, i.e. the integer part
of μ, and 0 < β < 1 is the fractional part of μ. Hence
n = 0, 1, 2, . . . for μ > 0 and n = −1,−2,−3, . . . for
μ < 0. Note that the signs of e and B can be fixed and the
potential is invariant under the changes e → −e, s → −s; it
hence suffices to consider only the case e < 0, μ > 0. One
can suppose that a bound state exists due to the interaction of
the fermion spin magnetic moment with AB magnetic field,
which must be attractive. In the case μ > 0, the potential
is attractive for s = −1 and repulsive for s = 1, in the
case μ < 0; it is attractive for s = 1 and repulsive for
s = −1. Then it is seen that when β �= 0 the upper and
lower components of (11) are integrable near r = 0 only for
ν ± s > −1.

A linearly independent solution at ν �= 0, U (r; E), is
determined as follows:

U (r, E) = B

(√
E + m J−ν(pr)

±√
E − m J−ν∓s(pr)

)
. (13)

Here B is a constant. We shall need the irregular (i.e. inte-
grable at r → ∞) solutions for E2 −m2 < 0. Such irregular
solutions, nontrivial at ν �= n/2, n = 1, 2, . . . are a linear
combination of F and U and also can be represented via the
MacDonald functions:

V (r, E) =
(
v1

v2

)
= B

(√
m + E Kν(λr)

±s
√

m − E Kν±s(λr)

)
, (14)

where C is a constant and λ = √
m2 − E2. The irregular

solutions are integrable at r → ∞.

3 Bound fermion state energy: physical regularization

A δ(x) potential is convenient to take into account artificially
by means of the continuity relations. For this we replace the
spin term (5) by [4]

− seB
δ(r − R)

R
(15)

and take account of it by means of the continuity relations in
R. The quantity Bδ(r − R)/R should not be considered as
the real magnetic field inside a flux tube but only as a field
model allowing us to take it it into account by means of the
continuity relations for solutions in two ranges. Although the
functional structures of Eqs. (5) and (15) are quite different,
as discussed in [32], we are free to use any form of poten-
tial, provided that only the contribution of the form (5) is
excluded.

Now we can find the wave function and the energy of the
bound state by means of solutions to the Dirac equation in

the ranges r < R and r > R and the potential (15) can
be taken into account by means of the continuity relations.
Obviously, for the model with the zero AB potential in the
range r < R the radial solutions must satisfy (9) at μ = 0.
They are written via the Bessel functions, integrable near
r = 0:

S(r, E) =
(

s1

s2

)
= C

(√
E + m J|l|(pr)

±√
E − m J|l|±s(pr)

)
, (16)

where C is a constant, |l|±s ≥ 0 and the upper (lower) signs
should be taken for l > 0 (l < 0). The continuity relations
can be written as(

s1

s2

)
R−δ

=
(
v1

v2

)
R−δ

, δ → 0. (17)

The left- and right-hand sides of (17) are calculated using
the asymptotic representation for the Bessel functions in the
limit z � 1:

Jν(z) = zν

2ν(1 + ν)
,

Kν(z) = − π

2 sin(πν)

[
zν

2ν(1 + ν)
− z−ν

2−ν(1 − ν)

]
. (18)

Here (x) is the Euler gamma function of argument x .
The energy spectrum is determined by(
s1

s2

)
R−δ

=
(
v1

v2

)
R−δ

, δ → 0. (19)

As a result, we obtain

−s

√
E − m

m − E

(k R)±s(1 + |l|)
2±s(1 + |l| ± s)

=
[

(λR)ν±s

2ν±s(1 + ν ± s)
− (λR)−(ν±s)

2−(ν±s)(1 − (ν ± s))

]

×
[

(λR)ν

2ν(1 + ν)
− (λR)−ν

2−ν(1 − ν)

]−1

. (20)

It follows from Eq. (20) that the bound state energy is
determined by the poles of the gamma function(1+|l|±s)
at l = 0:

(λR)−(n+β±s)

2−(n+β±s)(1 − (n + β ± s))
− (λR)n+β±s

2n+β±s(1 + n + β ± s)
= 1 ± s, (21)

where we must put n = 0 and take the upper (lower) signs
for s = −1, β > 0 (s = 1, β < 0). As a result, we obtain
the same equation for these two cases in the form

λ = 2

R

(
(|β|)

(2 − |β|)
)2(|β|−1)

. (22)

We define the particle (antiparticle) bound states as states
that tend to the upper (lower) continuous boundary m (−m)
upon adiabatically slow switching of the external field. Only
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one particle (antiparticle) bound state with s = −1 (s = 1)
emerges. It is seen that these equations hold for the case
l + n = ∓1 (s = ±1). One can find from (22) that an
adiabatic increase of the magnetic flux (β) from 0 to 1 lifts
a particle (antiparticle) energy level E = m → E = −m
(E = −m → E = m) and for |β| = 1/2 the particle and
antiparticle energies are equal E = ±√

m2 − R−2, where the
upper (lower) signs should be taken for particle (antiparticle).
We believe that the doublet

V0(r, E) = N

(√
m + E Kβ(λr)

s
√

m − E K1−β(λr)

)
(23)

(N is a normalization factor) correctly represents the particle
radial wave function (with s = −1) in the bound state. It is
evident that the wave function (23) is singular at r = 0 but
square integrable on the half-line [0,∞) with the measure
rdr .

The bound state energy for the considered system was
derived in [28] by means of the self-adjoint extension method
in the form

λ = 2m

(
− (|β − 1/2| + 1/2)

ξ(1/2 − |β − 1/2|)
)−2(|β−1/2|)

. (24)

Here ξ = tan(θ/2) (2π ≥ θ ≥ 0) parameterizes the self-
adjoint extensions of the radial Dirac Hamiltonian, which
are different for various θ except for the two equivalent cases
θ = 0, 2π (or ξ = ±∞). We can determine the self-adjoint
extension parameter in terms of the physics of the problem,
i.e. the parameter R. By comparing Eqs. (22) and (22) we
arrive, for example for β > 1/2, at

ξ = −(m R)2β−1(2 − β)

(β)
. (25)

4 Vacuum charge and current densities

Now we consider the densities of the vacuum electric charge
and vacuum electric current due to the vacuum polarization.
These quantities are determined by the three-vector jμ(r),
which is expressed via the Green function of the Dirac equa-
tion as follows:

jμ(r) = − e

2

∫

C

dE

2π i
trG(r, r′; E)γμ, (26)

where C is the path in the complex plane of E enclosing all
the singularities along the real axis E depending upon the
choice of the Fermi surface (we choose EF = −m). The
singularities of G(r, r′; E) can be simple poles associated
with the discrete spectrum (in the range −m < E < m),
and two cuts (−∞,−m] and [m,∞) associated with the
continuum spectrum in the ranges |E | ≥ m. As was shown
in [39]), for the partial Green function in a Coulomb field
in 3 + 1 dimensions, the path C may be deformed to run

along the singularities on the real E axis as follows: C =
C− + C p + C+, where C− is the path along the negative
real E axis (ReE < 0) from −∞ to 0 turning around at
E = 0 with positive orientation; C p is a circle around the
bound states’ singularities with −m < E < 0, and C+ is the
path along the positive real E axis (ReE > 0) from ∞ to
0 but with negative orientation (i.e. clockwise path) turning
around at E = 0. We note that, due to the Furry theorem, the
spatial component of the induced vacuum current in an AB
potential in 2 + 1 dimensions should be an odd function ofμ.
In the case considered this is the jϕ-component of the induced
vacuum current. It will be recalled that the jϕ-component is
the vector product of the vectors j and n = r/r and has the
only component [j × n] = jx ny − jynx ; it is the so-called
pseudoscalar. Thus, the jϕ-component of the induced current
is determined as follows:

jϕ(r) = − e

2

∫

C

dE

2π i
trG(r, r′; E)γϕ. (27)

For the Dirac equation in a Coulomb field in 3 + 1 dimen-
sions, the radial partial Green function is given by [39]

Gl(r, r
′; E)γ 0 = 1

W(E)
[�(r ′ − r)ψR(r)ψ

†
I (r

′)

+�(r − r ′)ψI (r)ψ
†
R(r

′)], (28)

where W(E) is the Wronskian and ψR(r) and ψI (r) are the
regular and irregular solutions of the radial Dirac equation
(Ȟ − E)ψ(r) = 0. One can show that the Green function
in our case can be represented via the regular and irregular
solutions of the two-dimensional radial Dirac equation, just
as in 3 + 1 dimensions. It is convenient to apply the dou-
blet (11) as the regular solutions and (14) as the irregular
ones. In such a way, we first construct the Green function
for the model with the nonzero (at r < R) AB potential by
analogy with the Coulomb case in 3+1 dimensions. The (r -
independent) Wronskian, defined by two doublets (11) and
(14) as Wr(V, F) = r V iσ2 F = r(v1 f2 − f1v2), is easily
calculated to be

Wr(V, F) = ∓ACλ−ν pν . (29)

Here the upper (lower) signs should be taken for l + μ > 0
(l + μ < 0).

For the induced vacuum charge and current in the AB
potential, we obtain

j0(r) = −eN 2[K 2
β(x)+ K 2

1−β(x)]β>1/2

−e
∫

C−+C+

dE

4π2i
tr

[
λν p−ν ((E + m)Kν(λr)Jν(pr)

−s
√
(m − E)(E − m)

(
−K ′

ν(λr)± s
ν

λr
Kν(λr)

)

×
(

∓s J ′
ν(pr)+ ν

pr
Jν(pr)

)) ]
(30)
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and

jϕ(r) = −2eN 2[Kβ(x)K1−β(x)]β>1/2

−e
∫

C−+C+

dE

4π2i
tr

×
[
λν p−ν

(
pKν

(
∓s J ′

ν(pr)+ ν

pr
Jν(pr)

)
+

+sλJν(pr)

(
−K ′

ν(λr)± s
ν

λr
Kν(λr)

))]
. (31)

In (30) and (31) N is the normalization factor, the prime
denotes the derivative of function with respect to argument
and tr ≡ ∑∞

l=−∞
∑

s=±1; x = λ(β, R)r , where λ(β, R) is
determined by (22) so x ∼ c(r/R), c ∼ 1.

Using the recurrent relations for the Bessel functions and
summing over s, we find

j0(r) = −eN 2[K 2
β(x)+ K 2

1−β(x)]β>1/2

±e
∫

C−+C+

dE

4π2i

∞∑
l=−∞

λν p−ν(E + m)Kν(λr)Jν(pr)

(32)

and

jϕ(r) = −2eN 2[Kβ(x)K1−β(x)]β>1/2

−e
∫

C−+C+

dE

4π2i

∞∑
l=−∞

λν p−ν ν
r

Kν(λr)Jν(pr). (33)

The integral over E from the first term of integrand (32) gives
0, because integrals taken along the paths C− and C+ cancel
in pairs. Now, it is possible to deform the paths C− and C+
to the imaginary E axis:

j0(r) = −eN 2[K 2
β(x)+ K 2

1−β(x)]β>1/2

±em

∞∫

−∞

dE

4π2

∞∑
l=−∞

Kν(z)Jν(z) = jb
0 (r)+ jv0 (r)

(34)

and

jϕ(r) = −2eN 2[Kβ(x)K1−β(x)]β>1/2

−e

r

∞∫

−∞

dE

4π2

∞∑
l=−∞

νKν(z)Iν(z) = jb
ϕ (r)+ jvϕ (r).

(35)

Here, the symbols b and v characterize the contributions from
the bound and the free states, respectively. In (34) the upper
(lower) signs should be taken for l + μ > 0 (l + μ < 0),
Iν(z) = e−iπν/2 Jν(i z) is the modified Bessel function of
the first kind of the argument z = √

m2 + E2r . An essen-
tial detail is that the vacuum charge ( jb

0 (r)) and the current

( jb
ϕ (r)) are singular at the origin, localized near the point

r = 0, and exponentially small at r � R:

jb
0 (r), jb

ϕ (r) ∼ e

r
e−cr/R .

Summation over l in (34) gives jv0 (r) = 0. For massless
fermions, this result was obtained and explained in [20] as fol-
lows: as far as jv0 (r) should be an odd function ofμ due to the
Furry theorem, it must be a pseudoscalar, which would con-
tradict to parity conservation of the two-dimensional Dirac
equation for a massless particle. In the two-dimensional
model with mass term, this term is not invariant with respect
to the operations of time inversion and of spatial parity. Nev-
ertheless, the nonzero vacuum charge density jb

0 (r) appears
due to the vacuum charge of the bound (empty!) state; the
vacuum charge spatial distribution is defined by the modu-
lus squared of the fermion wave function in the bound state
(with β > 1/2). The vacuum current density contains the
vacuum currents jb

ϕ (r) and jvϕ (r) that are, respectively, due
to the vacuum current of bound state and the vacuum cur-
rent of free (filled!) states jvϕ (r), which is spread out over an
energy range of the negative energy continuum. It is worth
to note that the vacuum charge density jv0 (r) is induced by
the homogeneous background magnetic field in the massive
QED2+1 [6,7], but this is not so in the QED3+1.

Using the easily checked representation

Kν(z)Iν(z) =
∞∫

0

dxe−2z cosh x I2ν(2z sinh x) (36)

and replacing variable x by y according to sinh x = sinh−1 y,
we obtain

jvϕ (r) = − e

2π2r

∞∫

0

dE
∞∑

l=−∞
ν

×
∞∫

0

dy

sinh y
e−2z coth y I2ν(2z/ sinh y). (37)

At m = 0 (37) takes the form

jvϕ (r) = − e

2π2r

∞∫

0

dE
∞∑

l=−∞
ν

×
∞∫

0

dy

sinh y
e−2Er coth y I2ν(2Er/ sinh y), (38)

which coincides exactly with that for the induced vacuum
current of massless fermions for the first time obtained in
[20].

The integrals over y from any summand of (38) diverge,
so some quantity δ � 1 should be introduced as a lower limit
of integration over y in order for us to be able to change the
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order of summation and integration [20]. After that, we first
take the integral over E by means of the formula [39]

∞∫

0

dte−at Iν(bt) = bν√
a2 − b2(a + √

a2 − b2)ν
. (39)

As a result, we obtain

jvϕ (r) = − e

2(πr)2

∞∑
l=−∞

|l + n + β|
∞∫

0

dy

sinh y
e−2|l+n+β|y .

(40)

Taking the sum over l by means of

4
∞∑

k=1

ke−2ky = − cosh−2 y,

2
∞∑

k=1

e−2ky = (ey/ cosh y)− 2 (41)

and then the integral over y using the formula [39]

∞∫

0

dt
sinh at

sinh bt
= π

2b
tanh

aπ

2b
, b > |a|, (42)

we finally arrive at

jvϕ (r) = e

4πr2 (2|β| − 1)2 tanh π |β|. (43)

We emphasize that jb
ϕ (r) = 0 at m = 0, because the nor-

malization constant N ∼ √
m. A massless charged fermion

cannot be bound with an AB potential. As far as the main
contribution to the integral over E at r � 1/m is given by
the region E ∼ 1/r , one can expect that Eq. (43) can be
used for an estimation of the massive case if we replace r2

by r2
√

1 + (mr)2 in the denominator of (43).
One can see that the induced current depends only on the

fractional part β ofμ and is a finite periodical function of the
magnetic flux. For the first time these results were obtained
in [20].

It should be noted that the nonzero probability current
arises under the effect of a constant uniform magnetic field
on an electron bound by an attractive delta-function poten-
tial [40,41]. The spatial distribution of the probability current
density resembles the spatial induced vacuum current jb

ϕ (r),
but the jb

ϕ (r) current arises due to vacuum polarization, i.e.
when the bound state is not filled. We also note that the vac-
uum polarization must manifest itself in such a way so as to
modify (change) the external potential.

If we take a real solenoid, then to learn the role of a finite
small radius R we consider again the semirealistic model
with the nonzero AB potential at r < R. For such a model
we can use a linear combination of the Jν(pr) and J−ν(pr)
Bessel functions but not the Bessel (J|l|±s(pr)) and Neumann
(N|l|±s(pr)) functions as the ψR, ψI solutions for r < R.
For r > R the Kν, Iν modified Bessel functions apply. Then
continuity at r = R determines the linear combination of the
Jν and J−ν solutions that joins the Kν function giving the
irregular solution. Continuity at r = R also can determine
the particular linear combination of the Kν and Iν that joins
the regular solution (i.e., one integrable near r = 0!). With
such constructed solutions the Green function will receive
finite-size corrections as functions at r < R and r > R
[39]. It is wonderful that for the considered model we do
not need to construct the regular solutions in the range r <
R because we can apply regular solutions constructed by
means of the self-adjoint method in [42]. Regular solutions
(doublets) must satisfy the so-called self-adjoint boundary
conditions [16],

(F†(r)iσ2 F(r))|r=0 = ( f̄1 f2 − f̄2 f1)|r=0 = 0. (44)

Physically, the self-adjoint boundary conditions show that
the radial component of probability current density is equal
to zero at the origin (the “origin” does not produce particles).
For our problem the needed regular solution has the form

ψ(r) =
(

f1(pr)
f2(pr)

)
= D

(√
E + m[cos(θ/2)J(1+s)/2−sβ(pr)− sin(θ/2)J−(1+s)/2+sβ(pr)]

−s
√

E − m[cos(θ/2)J(s−1)/2−sβ(pr)+ sin(θ/2)J(1−s)/2+sβ(pr)]
)
, (45)

where D is the normalization factor and, as above, 1 > β >

0, ξ = tan(θ/2). Note that the correct values of the self-
adjoint parameter determine the behavior of the upper (lower)
component of the doublet (45) at the origin. Particularly, the
case θ = 0 (θ = π ) is equivalent to insisting that the upper
(lower) component stays regular at the origin for any s = ±1
and, generally speaking, for μ > 0. If θ �= 0, π both com-
ponents of the doublet contain singular terms at the origin.

We need to estimate the contribution of the correction
functions to the induced vacuum current. To estimate the
Green correction function at r � R we do not need to sum
over l and s; it hence suffices to consider only the case, for
example, s = −1. First, from the simple system

C1 Kβ(z)+ C2 Iβ(z)

= (θ/2)Jβ(pR)− sin(θ/2)J−β(pR)] ≡ f1,

C1 K1−β(z)+ C2 I1−β(z) = (θ/2)Jβ−1(pR)+ sin(θ/2)

J1−β(pR)] ≡ f2, z =
√

m2 + E2 R, (46)

we obtain

C1 = f1 I1−β − f2 Iβ
W

, W = Kβ I1−β − K1−β Iβ. (47)
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At r � R the contribution of the Green (singular) cor-
rection function to the integrand in Eq. (33) is determined
with C1(E R). Estimating C1 with using Eq. (18), one can
obtain C1(E R) ∼ (E R)2 cos(θ/2), (E R)2β sin(θ/2). The
main contribution to the integral over E at r � R is given
by E ∼ 1/r , so that the contribution of the Green correc-
tion function to the induced current is suppressed by the fac-
tors (R/r)2 cos(θ/2), (R/r)2β sin(θ/2). These results are in
agreement with estimations made in [20]. The contribution
of the Green (singular) correction function to the vacuum
charge density jv0 (r) may be nonzero and may contain the
same factors.

5 Summary

We have investigated the effect of vacuum polarization for
charged massive fermions in an AB potential in 2 + 1 dimen-
sions using the causal Green function of the Dirac equation
with the AB potential represented via the regular and irreg-
ular solutions of the two-dimensional radial Dirac equation,
which takes into account the fermion spin. It is shown that
the vacuum current density contains the contribution from
free filled states of the negative energy continuum as well
as that from a bound (empty!) state, which can emerge in
the above background due to the interaction of the fermion’s
spin magnetic moment with the AB magnetic field, while the
nonzero vacuum charge density appears only due to the con-
tribution from the bound state. We have derived (recovered
for massless fermions) expressions for the vacuum charge
and vacuum current densities for graphene in the field of an
infinitesimally thin solenoid perpendicular to the plane of a
sample.

Periodicity of the jvϕ vacuum electric current due to
vacuum polarization was observed recently in [43] in
“a quantum-tunneling system using two-dimensional ionic
structures in a linear Paul trap”. “The charged quantum-
tunneling particles should be affected by the vector potential
of a magnetic field throughout the entire process, even during
quantum tunneling, and, thus, the AB effect should occur for
tunneling particles”. The authors “were successful in observ-
ing the AB effect of tunneling particles using this system”. It
was revealed that “the tunneling rate of the structure period-
ically depends on the strength of the magnetic field, whose
period is the same as the magnetic-flux quantum φ0”. It will
be noted that this result is in agreement with Eq. (43), which
is a periodical function of the magnetic flux.
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