127 research outputs found

    The absorption spectrum of short-lived isotopic variant of water, H₂¹⁵O: Tentative detection at the Earth's atmosphere

    Get PDF
    A calculated infrared vibration–rotation spectrum of isotopically modified water, H215O, is presented. Oxygen-15 has a half-life of about 2 minutes and H215O may be formed in the atmosphere during thunderstorms as a result of photonuclear processes or when the atmosphere is irradiated by cosmic γ-rays. Variational nuclear motion calculations of vibrational and vibrational-rotational levels up to 25000 cm−1 and up to J = 10 in angular momentum are performed within the framework of the Born-Oppenheimer approximation using an accurate water potential function. The line shape parameters for H215O are estimated. Spectral ranges that are promising for the detection of H215O in the atmosphere are identified and a search for spectral signatures conducted. A spectral feature is tentatively assigned to the 752 (0 1 0) - 643 (0 0 0) line of H215O

    PNP13 QUALITY OF LIFE (QOL) AND PHARMACOECONOMICAL ASPECTS IN PATIENTS WITH SYMPTOMATIC LOCALIZATION-RELATED EPILEPSIES (SLE) IN MOSCOW

    Get PDF

    Self-consistent field theory for the interactions between keratin intermediate filaments

    Get PDF
    Background: Keratins are important structural proteins found in skin, hair and nails. Keratin Intermediate Filaments are major components of corneocytes, nonviable horny cells of the Stratum Corneum, the outermost layer of skin. It is considered that interactions between unstructured domains of Keratin Intermediate Filaments are the key factor in maintaining the elasticity of the skin. Results: We have developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory. The intermediate filaments are represented by charged surfaces, and the disordered terminal domains of the keratins are represented by charged heteropolymers grafted to these surfaces. We estimate the system is close to a charge compensation point where the heteropolymer grafting density is matched to the surface charge density. Using a protein model with amino acid resolution for the terminal domains, we find that the terminal chains can mediate a weak attraction between the keratin surfaces. The origin of the attraction is a combination of bridging and electrostatics. The attraction disappears when the system moves away from the charge compensation point, or when excess small ions and/or NMF-representing free amino acids are added. Conclusions: These results are in concordance with experimental observations, and support the idea that the interaction between keratin filaments, and ultimately in part the elastic properties of the keratin-containing tissue, is controlled by a combination of the physico-chemical properties of the disordered terminal domains and the composition of the medium in the inter-filament region. Keywords: Stratum corneum, Skin keratins, Intermediate filaments, Unstructured terminal domains, Bridging attractio

    Small molecule compounds targeting the p53 pathway: are we finally making progress?

    Get PDF
    Loss of function of p53, either through mutations in the gene or through mutations to other members of the pathway that inactivate wild-type p53, remains a critically important aspect of human cancer development. As such, p53 remains the most commonly mutated gene in human cancer. For these reasons, pharmacologic activation of the p53 pathway has been a highly sought after, yet unachieved goal in developmental therapeutics. Recently progress has been made not only in the discovery of small molecules that target wild-type and mutant p53, but also in the initiation and completion of the first in-human clinical trials for several of these drugs. Here, we review the current literature of drugs that target wild-type and mutant p53 with a focus on small-molecule type compounds. We discuss common means of drug discovery and group them according to their common mechanisms of action. Lastly, we review the current status of the various drugs in the development process and identify newer areas of p53 tumor biology that may prove therapeutically useful

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    UV Raman demonstrates that α-helical polyalanine peptides melt to polyproline II conformations

    No full text
    We examined the 204-nm UV Raman spectra of the peptide XAO, which was previously found by Shi et al.'s NMR study to occur in aqueous solution in a polyproline II (PPII) conformation (Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 9190). The UV Raman spectra of XAO are essentially identical to the spectra of small peptides such as ala5 and to the large 21 -residue predominantly Ala peptide, AP. We conclude that the non-α-helical conformations of these peptides are dominantly PPII. Thus, AP, which is highly α-helical at room temperature, melts to a PPII conformation. There is no indication of any population of intermediate disordered conformations. We continued our development of methods to relate the Ramachandran ψ-angle to the amide III band frequency. We describe a new method to estimate the Ramachandran ψ-angular distributions from amide III band line shapes measured in 204-nm UV Raman spectra. We used this method to compare the ψ-distributions in XAO, ala5, the non-α-helical state of AP, and acid-denatured apomyoglobin. In addition, we estimated the ψ-angle distributions of peptide bonds which occur in non-α-helix and non-β-sheet conformations in a small library of proteins

    Peptide secondary structure folding reaction coordinate: Correlation between UV Raman amide III frequency, ψ Ramachandran angle, and hydrogen bonding

    No full text
    We used UV resonance Raman (UVRR) spectroscopy to quantitatively correlate the peptide bond AmIII3 frequency to its ψ Ramachandran angle and to the number and types of amide hydrogen bonds at different temperatures. This information allows us to develop a family of relationships to directly estimate the ψ Ramachandran angle from measured UVRR AmIII3 frequencies for peptide bonds (PBs) with known hydrogen bonding (HB). These relationships ignore the more modest Φ Ramachandran angle dependence and allow determination of the ψ angle with a standard error of ±8°, if the HB state of a PB is known. This is normally the case if a known secondary structure motif is studied. Further, if the HB state of a PB in water is unknown, the extreme alterations in such a state could additionally bias the ψ angle by ±6°. The resulting ability to measure ψ spectroscopically will enable new incisive protein conformational studies, especially in the field of protein folding. This is because any attempt to understand reaction mechanisms requires elucidation of the relevant reaction coordinate(s). The ψ angle is precisely the reaction coordinate that determines secondary structure changes. As shown elsewhere (Mikhonin et al. J. Am. Chem. Soc. 2005, 727, 7712), this correlation can be used to determine portions of the energy landscape along the ψ reaction coordinate. © 2006 American Chemical Society
    corecore