27 research outputs found

    On the break in the single-particle energy dispersions and the `universal' nodal Fermi velocity in the high-temperature copper-oxide superconductors

    Full text link
    Recent data from angle-resolved photoemission experiments published by Zhou et al. [Nature, Vol. 423, 398 (2003)] concerning a number of hole-doped copper-oxide-based high-temperature superconductors reveal that in the nodal directions of the underlying square Brillouin zones (i.e. the directions along which the d-wave superconducting gap is vanishing) the Fermi velocities for some finite range of k inside the Fermi sea and away from the nodal Fermi wavevector k_F are to within an experimental uncertainty of approximately 20% the same both in all the compounds investigated and over a wide range of doping concentrations and that, in line with earlier experimental observations, at some characteristic wavevector k_* away from k_F the Fermi velocities undergo a sudden change, with this change (roughly speaking, a finite discontinuity) being the greatest (smallest) in the case of underdoped (overdoped) compounds. In this paper we present a rigorous analysis concerning the implications of these observations. [Short abstract]Comment: 29 pages, 4 postscript figures. Brought into conformity with the published versio

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference

    High Viral Fitness during Acute HIV-1 Infection

    Get PDF
    Several clinical studies have shown that, relative to disease progression, HIV-1 isolates that are less fit are also less pathogenic. The aim of the present study was to investigate the relationship between viral fitness and control of viral load (VL) in acute and early HIV-1 infection. Samples were obtained from subjects participating in two clinical studies. In the PULSE study, antiretroviral therapy (ART) was initiated before, or no later than six months following seroconversion. Subjects then underwent multiple structured treatment interruptions (STIs). The PHAEDRA study enrolled and monitored a cohort of individuals with documented evidence of primary infection. The subset chosen were individuals identified no later than 12 months following seroconversion to HIV-1, who were not receiving ART. The relative fitness of primary isolates obtained from study participants was investigated ex vivo. Viral DNA production was quantified using a novel real time PCR assay. Following intermittent ART, the fitness of isolates obtained from 5 of 6 PULSE subjects decreased over time. In contrast, in the absence of ART the fitness of paired isolates obtained from 7 of 9 PHAEDRA subjects increased over time. However, viral fitness did not correlate with plasma VL. Most unexpected was the high relative fitness of isolates obtained at Baseline from PULSE subjects, before initiating ART. It is widely thought that the fitness of strains present during the acute phase is low relative to strains present during chronic HIV-1 infection, due to the bottleneck imposed upon transmission. The results of this study provide evidence that the relative fitness of strains present during acute HIV-1 infection may be higher than previously thought. Furthermore, that viral fitness may represent an important clinical parameter to be considered when deciding whether to initiate ART during early HIV-1 infection

    H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues

    Get PDF
    A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues

    The different physical origins of 1/f noise and superimposed RTS noise in light-emitting quantum dot diodes

    No full text
    Low frequency noise characteristics of light-emitting diodes with InAs quantum dots in GaInAs layer are investigated. Two noise components were found in experimental noise records: RTS, caused by burst noise, and 1/f Gaussian noise. Extraction of burst noise component from Gaussian noise background was performed using standard signal detection theory and advanced signal-processing techniques. It was found that Hooge's empirical relation applied to diodes by Kleinpenning is applicable to the electric 1/f noise in quantum dot diodes as well. Two different spectra decomposition techniques are used to obtain burst noise spectra. Bias dependences of burst and 1/f noise are compared. It is concluded that the RTS noise and 1/f noise have different physical origins in light-emitting diodes with quantum dots
    corecore