5 research outputs found

    Skeletally Dugundji spaces

    Full text link
    We introduce and investigate the class of skeletally Dugundji spaces as a skeletal analogue of Dugundji space. The main result states that the following conditions are equivalent for a given space XX: (i) XX is skeletally Dugundji; (ii) Every compactification of XX is co-absolute to a Dugundji space; (iii) Every C∗C^*-embedding of the absolute p(X)p(X) in another space is strongly π\pi-regular; (iv) XX has a multiplicative lattice in the sense of Shchepin \cite{s76} consisting of skeletal maps

    Graph edit distance or graph edit pseudo-distance?

    Get PDF
    Graph Edit Distance has been intensively used since its appearance in 1983. This distance is very appropriate if we want to compare a pair of attributed graphs from any domain and obtain not only a distance, but also the best correspondence between nodes of the involved graphs. In this paper, we want to analyse if the Graph Edit Distance can be really considered a distance or a pseudo-distance, since some restrictions of the distance function are not fulfilled. Distinguishing between both cases is important because the use of a distance is a restriction in some methods to return exact instead of approximate results. This occurs, for instance, in some graph retrieval techniques. Experimental validation shows that in most of the cases, it is not appropriate to denominate the Graph Edit Distance as a distance, but a pseudo-distance instead, since the triangle inequality is not fulfilled. Therefore, in these cases, the graph retrieval techniques not always return the optimal graph

    Information transfer fidelity in spin networks and ring-based quantum routers

    Get PDF
    Spin networks are endowed with an Information Transfer Fidelity (ITF), which defines an absolute upper bound on the probability of transmission of an excitation from one spin to another. The ITF is easily computable but the bound can be reached asymptotically in time only under certain conditions. General conditions for attainability of the bound are established and the process of achieving the maximum transfer probability is given a dynamical model, the translation on the torus. The time to reach the maximum probability is estimated using the simultaneous Diophantine approximation, implemented using a variant of the Lenstra-Lenstra-Lov\'asz (LLL) algorithm. For a ring with uniform couplings, the network can be made a metric space by defining a distance (satisfying the triangle inequality) that quantifies the lack of transmission fidelity between two nodes. It is shown that transfer fidelities and transfer times can be improved significantly by means of simple controls taking the form of non-dynamic, spatially localized bias fields, opening up the possibility for intelligent design of spin networks and dynamic routing of information encoded in them, while being more flexible than engineering fixed couplings to favor some transfers, and less demanding than control schemes requiring fast dynamic controls
    corecore