414 research outputs found
Brieskorn manifolds as contact branched covers of spheres
We show that Brieskorn manifolds with their standard contact structures are
contact branched coverings of spheres. This covering maps a contact open book
decomposition of the Brieskorn manifold onto a Milnor open book of the sphere.Comment: 8 pages, 1 figur
Spectral networks
We introduce new geometric objects called spectral networks. Spectral
networks are networks of trajectories on Riemann surfaces obeying certain local
rules. Spectral networks arise naturally in four-dimensional N=2 theories
coupled to surface defects, particularly the theories of class S. In these
theories spectral networks provide a useful tool for the computation of BPS
degeneracies: the network directly determines the degeneracies of solitons
living on the surface defect, which in turn determine the degeneracies for
particles living in the 4d bulk. Spectral networks also lead to a new map
between flat GL(K,C) connections on a two-dimensional surface C and flat
abelian connections on an appropriate branched cover Sigma of C. This
construction produces natural coordinate systems on moduli spaces of flat
GL(K,C) connections on C, which we conjecture are cluster coordinate systems.Comment: 87 pages, 48 figures; v2: typos, correction to general rule for signs
of BPS count
SYZ mirror symmetry for hypertoric varieties
We construct a Lagrangian torus fibration on a smooth hypertoric variety and
a corresponding SYZ mirror variety using -duality and generating functions
of open Gromov-Witten invariants. The variety is singular in general. We
construct a resolution using the wall and chamber structure of the SYZ base.Comment: v_2: 31 pages, 5 figures, minor revision. To appear in Communications
in Mathematical Physic
The SYZ conjecture via homological mirror symmetry
These are expository notes based on a talk given at the Superschool on
derived categories and D-branes at University of Alberta in July of 2016. The
goal of these notes is to give a motivated introduction to the
Strominger-Yau-Zaslow (SYZ) conjecture from the point of view of homological
mirror symmetry.Comment: Contribution to the proceedings of the Superschool on derived
categories and D-brane
Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations
A new iterative algorithm for solving initial data inverse problems from partial observations has been recently proposed in Ramdani et al. (Automatica 46(10), 1616-1625, 2010 ). Based on the concept of observers (also called Luenberger observers), this algorithm covers a large class of abstract evolution PDE's. In this paper, we are concerned with the convergence analysis of this algorithm. More precisely, we provide a complete numerical analysis for semi-discrete (in space) and fully discrete approximations derived using finite elements in space and an implicit Euler method in time. The analysis is carried out for abstract Schrödinger and wave conservative systems with bounded observation (locally distributed)
Period- and mirror-maps for the quartic K3
We study in detail mirror symmetry for the quartic K3 surface in P3 and the
mirror family obtained by the orbifold construction. As explained by Aspinwall
and Morrison, mirror symmetry for K3 surfaces can be entirely described in
terms of Hodge structures. (1) We give an explicit computation of the Hodge
structures and period maps for these families of K3 surfaces. (2) We identify a
mirror map, i.e. an isomorphism between the complex and symplectic deformation
parameters, and explicit isomorphisms between the Hodge structures at these
points. (3) We show compatibility of our mirror map with the one defined by
Morrison near the point of maximal unipotent monodromy. Our results rely on
earlier work by Narumiyah-Shiga, Dolgachev and Nagura-Sugiyama.Comment: 29 pages, 3 figure
Dense Motion Estimation for Smoke
Motion estimation for highly dynamic phenomena such as smoke is an open
challenge for Computer Vision. Traditional dense motion estimation algorithms
have difficulties with non-rigid and large motions, both of which are
frequently observed in smoke motion. We propose an algorithm for dense motion
estimation of smoke. Our algorithm is robust, fast, and has better performance
over different types of smoke compared to other dense motion estimation
algorithms, including state of the art and neural network approaches. The key
to our contribution is to use skeletal flow, without explicit point matching,
to provide a sparse flow. This sparse flow is upgraded to a dense flow. In this
paper we describe our algorithm in greater detail, and provide experimental
evidence to support our claims.Comment: ACCV201
Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator
We consider the problem of recovering the initial data (or initial state) of infinite-dimensional linear systems with unitary semigroups. It is well-known that this inverse problem is well posed if the system is exactly observable, but this assumption may be very restrictive in some applications. In this paper we are interested in systems which are not exactly observable, and in particular, where we cannot expect a full reconstruction. We propose to use the algorithm studied by Ramdani et al. in (Automatica 46:1616–1625, 2010) and prove that it always converges towards the observable part of the initial state. We give necessary and sufficient condition to have an exponential rate of convergence. Numerical simulations are presented to illustratethe theoretical results
Symplectic cohomology and q-intersection numbers
Given a symplectic cohomology class of degree 1, we define the notion of an
equivariant Lagrangian submanifold. The Floer cohomology of equivariant
Lagrangian submanifolds has a natural endomorphism, which induces a grading by
generalized eigenspaces. Taking Euler characteristics with respect to the
induced grading yields a deformation of the intersection number. Dehn twists
act naturally on equivariant Lagrangians. Cotangent bundles and Lefschetz
fibrations give fully computable examples. A key step in computations is to
impose the "dilation" condition stipulating that the BV operator applied to the
symplectic cohomology class gives the identity. Equivariant Lagrangians mirror
equivariant objects of the derived category of coherent sheaves.Comment: 32 pages, 9 figures, expanded introduction, added details of example
7.5, added discussion of sign
On the geometry of C^3/D_27 and del Pezzo surfaces
We clarify some aspects of the geometry of a resolution of the orbifold X =
C3/D_27, the noncompact complex manifold underlying the brane quiver standard
model recently proposed by Verlinde and Wijnholt. We explicitly realize a map
between X and the total space of the canonical bundle over a degree 1 quasi del
Pezzo surface, thus defining a desingularization of X. Our analysis relys
essentially on the relationship existing between the normalizer group of D_27
and the Hessian group and on the study of the behaviour of the Hesse pencil of
plane cubic curves under the quotient.Comment: 23 pages, 5 figures, 2 tables. JHEP style. Added references.
Corrected typos. Revised introduction, results unchanged
- …