7 research outputs found

    Organizing Effects of Sex Steroids on Brain Aromatase Activity in Quail

    Get PDF
    Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first experiment we measured AA in brain regions micropunched in adult male and female Japanese quail utilizing the novel strategy of basing the microdissections on the distribution of aromatase-immunoreactive cells. The largest sex difference was found in the medial bed nucleus of the stria terminalis (mBST) followed by the medial preoptic nucleus (POM) and the tuberal hypothalamic region. A second experiment tested the effect of embryonic treatments known to sex-reverse male copulatory behavior (i.e., estradiol benzoate [EB] or the aromatase inhibitor, Vorozole) on brain AA in gonadectomized adult males and females chronically treated as adults with testosterone. Embryonic EB demasculinized male copulatory behavior, while vorozole blocked demasculinization of behavior in females as previously demonstrated in birds. Interestingly, these treatments did not affect a measure of appetitive sexual behavior. In parallel, embryonic vorozole increased, while EB decreased AA in pooled POM and mBST, but the same effect was observed in both sexes. Together, these data indicate that the early action of estrogens demasculinizes AA. However, this organizational action of estrogens on AA does not explain the behavioral sex difference in copulatory behavior since AA is similar in testosterone-treated males and females that were or were not exposed to embryonic treatments with estrogens

    Environmental Health Factors and Sexually Dimorphic Differences in Behavioral Disruptions

    No full text
    Mounting evidence suggests that environmental factors—in particular, those that we are exposed to during perinatal life—can dramatically shape the organism’s risk for later diseases, including neurobehavioral disorders. However, depending on the environmental insult, one sex may demonstrate greater vulnerability than the other sex. Herein, we focus on two well-defined extrinsic environmental factors that lead to sexually dimorphic behavioral differences in animal models and linkage in human epidemiological studies. These include maternal or psychosocial stress (such as social stress) and exposure to endocrine-disrupting compounds (such as one of the most prevalent, bisphenol A [BPA]). In general, the evidence suggests that early environmental exposures, such as BPA and stress, lead to more pronounced behavioral deficits in males than in females, whereas female neurobehavioral patterns are more vulnerable to later in life stress. These findings highlight the importance of considering sex differences and developmental timing when examining the effects of environmental factors on later neurobehavioral outcomes

    The Link Between Stress and Endometriosis: from Animal Models to the Clinical Scenario

    No full text

    Antidepressant Activity

    No full text
    corecore