3,906 research outputs found
Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals
There is a number of explicit kinetic energy density functionals for
non-interacting electron systems that are obtained in terms of the electron
density and its derivatives. These semilocal functionals have been widely used
in the literature. In this work we present a comparative study of the kinetic
energy density of these semilocal functionals, stressing the importance of the
local behavior to assess the quality of the functionals. We propose a quality
factor that measures the local differences between the usual orbital-based
kinetic energy density distributions and the approximated ones, allowing to
ensure if the good results obtained for the total kinetic energies with these
semilocal functionals are due to their correct local performance or to error
cancellations. We have also included contributions coming from the laplacian of
the electron density to work with an infinite set of kinetic energy densities.
For all the functionals but one we have found that their success in the
evaluation of the total kinetic energy are due to global error cancellations,
whereas the local behavior of their kinetic energy density becomes worse than
that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure
A quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability
Microscopic cascading of second-order nonlinearities between two molecules
has been proposed to yield an enhanced third-order molecular nonlinear-optical
response. In this contribution, we investigate the two-molecule cascaded second
hyperpolarizability and show that it will never exceed the fundamental limit of
a single molecule with the same number of electrons as the two-molecule system.
We show the apparent divergence behavior of the cascading contribution to the
second hyperpolarizability vanishes when properly taking into account the
intermolecular interactions. Although cascading can never lead to a larger
nonlinear-optical response than a single molecule, it provides alternative
molecular design configurations for creating materials with large third-order
susceptibilities that may be difficult to design into a single molecule.Comment: 13 pages, 9 figures, 1 tabl
Study of Small-Scale Anisotropy of Ultrahigh Energy Cosmic Rays Observed in Stereo by HiRes
The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence
detector which, operating in stereo mode, has a typical angular resolution of
0.6 degrees and is sensitive to cosmic rays with energies above 10^18 eV. HiRes
is thus an excellent instrument for the study of the arrival directions of
ultrahigh energy cosmic rays. We present the results of a search for
anisotropies in the distribution of arrival directions on small scales (<5
degrees) and at the highest energies (>10^19 eV). The search is based on data
recorded between 1999 December and 2004 January, with a total of 271 events
above 10^19 eV. No small-scale anisotropy is found, and the strongest
clustering found in the HiRes stereo data is consistent at the 52% level with
the null hypothesis of isotropically distributed arrival directions.Comment: 4 pages, 3 figures. Matches accepted ApJL versio
Preparing potential teachers for the transition from employment to teacher training: an evaluative case study of a Maths Enhancement Course
In response to a UK government drive to improve maths teaching in schools, the South West London Maths Enhancement Course (MEC) has been set up though collaboration between three Higher Education institutions (HEIs) to provide an efficient route for non maths graduates in employment to upgrade their subject knowledge and give a smooth transition into teacher training (PGCE).
An evaluation of the scheme, measured against Teacher Development Agency (TDA) objectives and success criteria agreed by university staff, involved thematic analysis of focus group discussions and interviews with students and staff during both the MEC and PGCE courses. This has revealed a high level of satisfaction and success related to a number of underlying issues, particularly around student recruitment, curriculum design, peer support and staff collaboration. The model offers an example of practice transferable to a range of programmes aimed at supporting students in the transition between levels and institutions
Thermal-Shock Resistance and Fracture-Strength Behavior of Two Tool Carbides
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66260/1/j.1151-2916.1976.tb09415.x.pd
Electro-Mechanical Fredericks Effects in Nematic Gels
The solid nematic equivalent of the Fredericks transition is found to depend
on a critical field rather than a critical voltage as in the classical case.
This arises because director anchoring is principally to the solid rubbery
matrix of the nematic gel rather than to the sample surfaces. Moreover, above
the threshold field, we find a competition between quartic (soft) and
conventional harmonic elasticity which dictates the director response. By
including a small degree of initial director misorientation, the calculated
field variation of optical anisotropy agrees well with the conoscopy
measurements of Chang et al (Phys.Rev.E56, 595, 1997) of the electro-optical
response of nematic gels.Comment: Latex (revtex style), 5 EPS figures, submitted to PRE, corrections to
discussion of fig.3, cosmetic change
Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations
The Diels-Alder reaction between 2,3-dibromo-1,3-butadiene and maleic anhydride has been studied by means of multisurface adiabatic reactive molecular dynamics and the PhysNet neural network architecture. This system is used as a prototype to explore the concertedness, synchronicity, and possible ways of promotion of Diels-Alder reactions. Analysis of the minimum dynamic path indicates that rotational energy is crucial (similar to 65%) to drive the system toward the transition state in addition to collision energy (similar to 20%). Comparison with the reaction of butadiene and maleic anhydride shows that the presence of bromine substituents in the diene accentuates the importance of rotational excitation to promote the reaction. At the high total energies at which reactive events are recorded, the reaction is found to be direct and mostly synchronous
Lower Bounds and Series for the Ground State Entropy of the Potts Antiferromagnet on Archimedean Lattices and their Duals
We prove a general rigorous lower bound for
, the exponent of the ground state
entropy of the -state Potts antiferromagnet, on an arbitrary Archimedean
lattice . We calculate large- series expansions for the exact
and compare these with our lower bounds on
this function on the various Archimedean lattices. It is shown that the lower
bounds coincide with a number of terms in the large- expansions and hence
serve not just as bounds but also as very good approximations to the respective
exact functions for large on the various lattices
. Plots of are given, and the general dependence on
lattice coordination number is noted. Lower bounds and series are also
presented for the duals of Archimedean lattices. As part of the study, the
chromatic number is determined for all Archimedean lattices and their duals.
Finally, we report calculations of chromatic zeros for several lattices; these
provide further support for our earlier conjecture that a sufficient condition
for to be analytic at is that is a regular
lattice.Comment: 39 pages, Revtex, 9 encapsulated postscript figures, to appear in
Phys. Rev.
On the geometry of quantum indistinguishability
An algebraic approach to the study of quantum mechanics on configuration
spaces with a finite fundamental group is presented. It uses, in an essential
way, the Gelfand-Naimark and Serre-Swan equivalences and thus allows one to
represent geometric properties of such systems in algebraic terms. As an
application, the problem of quantum indistinguishability is reformulated in the
light of the proposed approach. Previous attempts aiming at a proof of the
spin-statistics theorem in non-relativistic quantum mechanics are explicitly
recast in the global language inherent to the presented techniques. This leads
to a critical discussion of single-valuedness of wave functions for systems of
indistinguishable particles. Potential applications of the methods presented in
this paper to problems related to quantization, geometric phases and phase
transitions in spin systems are proposed.Comment: 24 page
- âŠ