6 research outputs found

    Changing perceptions of hunger on a high nutrient density diet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet.</p> <p>Methods</p> <p>This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrient diet. Participants completed a survey rating various dimensions of hunger (physical symptoms, emotional symptoms, and location) when on their previous usual diet versus the high micronutrient density diet. Statistical analysis was conducted using non-parametric tests.</p> <p>Results</p> <p>Highly significant differences were found between the two diets in relation to all physical and emotional symptoms as well as the location of hunger. Hunger was not an unpleasant experience while on the high nutrient density diet, was well tolerated and occurred with less frequency even when meals were skipped. Nearly 80% of respondents reported that their experience of hunger had changed since starting the high nutrient density diet, with 51% reporting a dramatic or complete change in their experience of hunger.</p> <p>Conclusions</p> <p>A high micronutrient density diet mitigates the unpleasant aspects of the experience of hunger even though it is lower in calories. Hunger is one of the major impediments to successful weight loss. Our findings suggest that it is not simply the caloric content, but more importantly, the micronutrient density of a diet that influences the experience of hunger. It appears that a high nutrient density diet, after an initial phase of adjustment during which a person experiences "toxic hunger" due to withdrawal from pro-inflammatory foods, can result in a sustainable eating pattern that leads to weight loss and improved health. A high nutrient density diet provides benefits for long-term health as well as weight loss. Because our findings have important implications in the global effort to control rates of obesity and related chronic diseases, further studies are needed to confirm these preliminary results.</p

    Proteome from patients with metabolic syndrome is regulated by quantity and quality of dietary lipids

    Get PDF
    Background: Metabolic syndrome is a multi-component disorder associated to a high risk of cardiovascular disease. Its etiology is the result of a complex interaction between genetic and environmental factors, including dietary habits. We aimed to identify the target proteins modulated by the long-term consumption of four diets differing in the quality and quantity of lipids in the whole proteome of peripheral blood mononuclear cells (PBMC). Results: A randomized, controlled trial conducted within the LIPGENE study assigned 24 MetS patients for 12 weeks each to 1 of 4 diets: a) high-saturated fatty acid (HSFA), b) high-monounsaturated fatty acid (HMUFA), c) low-fat, high-complex carbohydrate diets supplemented with placebo (LFHCC) and d) low-fat, high-complex carbohydrate diets supplemented with long chain (LC) n-3 polyunsaturated fatty acids (PUFA) (LFHCC n-3). We analyzed the changes induced in the proteome of both nuclear and cytoplasmic fractions of PBMC using 2-D proteomic analysis. Sixty-seven proteins were differentially expressed after the long-term consumption of the four diets. The HSFA diet induced the expression of proteins responding to oxidative stress, degradation of ubiquitinated proteins and DNA repair. However, HMUFA, LFHCC and LFHCC n-3 diets down-regulated pro-inflammatory and oxidative stress-related proteins and DNA repairing proteins. Conclusion: The long-term consumption of HSFA, compared to HMUFA, LFHCC and LFHCC n-3, seems to increase the cardiovascular disease (CVD) risk factors associated with metabolic syndrome, such as inflammation and oxidative stress, and seem lead to DNA damage as a consequence of high oxidative stress

    New trends in the electrochemical sensing of dopamine

    No full text
    corecore