12 research outputs found

    H5N1 virus causes significant perturbations in host proteome very early in influenza virus-infected primary human monocyte-derived macrophages

    No full text
    H5N1 influenza viruses, which cause disease in humans, have unusually high pathogenicity. The temporal response of primary human monocyte-derived macrophages infected with highly pathogenic H5N1 and seasonal H1N1 influenza viruses was evaluated using mass spectrometry-based quantitative proteomic profiling. This was done in order to demonstrate significant perturbation of the host proteome upon viral infection, as early as 1 hour after infection. This early host response distinguished H5N1 infection from H1N1 infection, the latter inducing less of a response. The most pronounced effect was observed on the translational machinery, suggesting that H5N1 might gain advantage in replication by using the cell protein synthesis machinery early in the infection. © The Author 2012.link_to_subscribed_fulltex

    Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry

    No full text
    We describe an integrated workflow that robustly identifies cross-links from endogenous protein complexes in human cellular lysates. Our approach is based on the application of mass spectrometry (MS)-cleavable cross-linkers, sequential collision-induced dissociation (CID)–tandem MS (MS/MS) and electron-transfer dissociation (ETD)-MS/MS acquisitions, and a dedicated search engine, XlinkX, which allows rapid cross-link identification against a complete human proteome database. This approach allowed us to detect 2,179 unique cross-links (1,665 intraprotein cross-links at a 5% false discovery rate (FDR) and 514 interprotein cross-links at 1% FDR) in HeLa cell lysates. We validated the confidence of our cross-linking results by using a target-decoy strategy and mapping the observed cross-link distances onto existing high-resolution structures. Our data provided new structural information about many protein assemblies and captured dynamic interactions of the ribosome in contact with different elongation factors
    corecore