2 research outputs found

    Advanced glycation endproducts and their receptor in different body compartments in COPD

    Full text link
    © 2016 Hoonhorst et al. Background: Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by chronic airway inflammation and emphysema, and is caused by exposure to noxious particles or gases, e.g. cigarette smoke. Smoking and oxidative stress lead to accelerated formation and accumulation of advanced glycation end products (AGEs), causing local tissue damage either directly or by binding the receptor for AGEs (RAGE). This study assessed the association of AGEs or RAGE in plasma, sputum, bronchial biopsies and skin with COPD and lung function, and their variance between these body compartments. Methods: Healthy smoking and never-smoking controls (n = 191) and COPD patients (n = 97, GOLD stage I-IV) were included. Autofluorescence (SAF) was measured in the skin, AGEs (pentosidine, CML and CEL) and sRAGE in blood and sputum by ELISA, and in bronchial biopsies by immunohistochemistry. eQTL analysis was performed in bronchial biopsies. Results: COPD patients showed higher SAF values and lower plasma sRAGE levels compared to controls and these values associated with decreased lung function (p <0.001; adjusting for relevant covariates). Lower plasma sRAGE levels significantly and independently predicted higher SAF values (p < 0.001). One SNP (rs2071278) was identified within a region of 50 kB flanking the AGER gene, which was associated with the gene and protein expression levels of AGER and another SNP (rs2071278) which was associated with the accumulation of AGEs in the skin. Conclusion: In COPD, AGEs accumulate differentially in body compartments, i.e. they accumulate in the skin, but not in plasma, sputum and bronchial biopsies. The association between lower sRAGE and higher SAF levels supports the hypothesis that the protective mechanism of sRAGE as a decoy-receptor is impaired in COPD

    Susceptibility to COPD:Differential Proteomic Profiling after Acute Smoking

    Get PDF
    Cigarette smoking is the main risk factor for COPD (Chronic Obstructive Pulmonary Disease), yet only a subset of smokers develops COPD. Family members of patients with severe early-onset COPD have an increased risk to develop COPD and are therefore defined as "susceptible individuals". Here we perform unbiased analyses of proteomic profiles to assess how "susceptible individuals" differ from age-matched "non-susceptible individuals" in response to cigarette smoking. Epithelial lining fluid (ELF) was collected at baseline and 24 hours after smoking 3 cigarettes in young individuals susceptible or non-susceptible to develop COPD and older subjects with established COPD. Controls at baseline were older healthy smoking and non-smoking individuals. Five samples per group were pooled and analysed by stable isotope labelling (iTRAQ) in duplicate. Six proteins were selected and validated by ELISA or immunohistochemistry. After smoking, 23 proteins increased or decreased in young susceptible individuals, 7 in young non-susceptible individuals, and 13 in COPD in the first experiment; 23 proteins increased or decreased in young susceptible individuals, 32 in young non-susceptible individuals, and 11 in COPD in the second experiment. SerpinB3 and Uteroglobin decreased after acute smoke exposure in young non-susceptible individuals exclusively, whereas Peroxiredoxin I, S100A9, S100A8, ALDH3A1 (Aldehyde dehydrogenase 3A1) decreased both in young susceptible and non-susceptible individuals, changes being significantly different between groups for Uteroglobin with iTRAQ and for Serpin B3 with iTRAQ and ELISA measures. Peroxiredoxin I, SerpinB3 and ALDH3A1 increased in COPD patients after smoking. We conclude that smoking induces a differential protein response in ELF of susceptible and non-susceptible young individuals, which differs from patients with established COPD. This is the first study applying unbiased proteomic profiling to unravel the underlying mechanisms that induce COPD. Our data suggest that SerpinB3 and Uteroglobin could be interesting proteins in understanding the processes leading to COPD
    corecore