3,276 research outputs found

    The effects of cadmium on heme oxygenase-1 in HCT116 human colon epithelial cells with or without iron deficiency

    Get PDF
    Metals may have contrasting biological effects. Iron, a component of a variety of iron-containing proteins, plays an important role in maintaining a healthy human body. In contrast, cadmium, a contaminant and carcinogen, has been considered one of the most toxic elements in the environment. As a defending mechanism against the exposure to cadmium, cells increase expression of cytoprotective genes such as heme oxygenase-1 (HO-1). Although both the importance of iron and the toxicity of cadmium are well known, it is not clear whether iron is required for the defending mechanism (that is, the upregulation of HO-1) against the toxicity of cadmium. In my thesis project, the effects of cadmium on HO-1 in HCT116 human colon epithelial cells with or without iron deficiency were investigated. It was found that cadmium upregulated HO-1 mRNA and protein expression and enzyme activity, but these effects were decreased by desferoxamine (DFO), an iron chelator, suggesting iron plays a critical role in cadmium-induced upregulation of HO-1. This conclusion was supported by two other observations: 1) another iron chelator, 2',2'-dipyridyl (DPD), also decreased the upregulating effects of cadmium on HO-1 mRNA and protein expression; 2) iron sulfate, but not zinc sulfate and copper sulfate, restored the upregulating effects of cadmium on HO-1 mRNA and protein expression and enzyme activity in iron-deficient cells caused by the pretreatments with iron chelators, DFO or DPD. Further experiments were conducted to help explain the observations. There were two primary findings: 1) cadmium decreased intracellular glutathione levels, similar in the effects of glutathione inhibitors, ethacrynic acid (EA) and buthionine sulfoximine (BSO); however, only cadmium and EA, but not BSO, increased the expression of HO-1 mRNA and the nuclear expression of nuclear factor-E2-related factor-2 (Nrf-2), suggesting that cadmium may have the same effect as EA to directly react with intracellular glutathione; 2) being similar in effect to iron chelators, NADPH oxidase (NOX) inhibitors such as apocynin and diphenyleneiodonium (DPI), and superoxide scavenger, tiron, decreased the upregulating effects of cadmium on HO-1 mRNA and protein expression and enzyme activity. Compiled together, the results suggest that NOX-produced ROS play an important role in cadmium-induced HO-1 upregulation; cadmium induces intracellular accumulation of ROS by depleting intracellular glutathione, and increases nuclear Nrf-2 expression, which all lead to the upregulation of HO-1 expression. Moreover, it is possible that iron chelators, DFO and DPD, deplete iron contained in heme, a component of NOX, decreasing NOX-produced ROS, therefore decreasing the upregulating effect of cadmium on HO-1. In conclusion, the results imply that cadmium could be more toxic to iron-deficient cells than to iron-sufficient cells, suggesting that cadmium exposure could result in more severe consequences in an iron-deficient population than in a healthy population

    Cellular Iron Depletion Weakens Induction of Heme Oxygenase-1 by Cadmium

    Get PDF
    Heme oxygenase-1 is an inducible cytoprotective gene, although its induction by environmental factors is not completely understood. This study aimed to ascertain if specific nutritive factors or related compounds influence heme oxygenase-1 expression. In HCT-116 cells, cadmium increased heme oxygenase-1 enzymatic activity. This effect of cadmium was weaker in cells made iron-deficient with the iron chelator, desferrioxamine, which was associated with repression of heme oxygenase-1 protein and mRNA expression. The repression by desferrioxamine of cadmium-induced heme oxygenase-1 upregulation was reversed upon iron replenishment of the cells. Additionally, it was found that thiol antioxidants inhibited the heme oxygenase-1 upregulation caused by cadmium and also by ethacrynic acid, which each decreased intracellular glutathione as did buthionine sulfoxamine. Interestingly, cadmium and ethacrynic acid increased nuclear translocation of Nrf2 and subsequent heme oxygenase-1 expression, but buthionine sulfoxamine did not. Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin, and a superoxide scavenger (Tiron) inhibited cadmium-induced upregulation of heme oxygenase-1. Diphenyleneiodonium was the most potent and inhibited NADPH-cytochrome P450 reductase as well, whereas apocynin and Tiron did not. It is concluded that adequate amounts of iron, which at the atomic level can serve as the pivotal element of heme in NADPH oxidase, must be present in cells to permit what appears to be thiol redox-sensitive, NADPH oxidase-dependent upregulation of heme oxygenase-1. Thus, these findings are significant because they suggest that cells without adequate iron would be unable to fully express the stress gene, heme oxygenase-1, when confronted with the toxic metal, cadmium

    Solitons and 2 D vortex dynamics

    Get PDF
    Session AI: Vortex Dynamics, abstract no. AI.01published_or_final_versio

    Protein interactions in Xenopus germ plasm RNP particles

    Get PDF
    Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles

    A novel, molybdenum-containing methionine sulfoxide reductase supports survival of Haemophilus influenzae in an in vivo model of infection

    Full text link
    © 2016 Dhouib, Othman, Lin, Lai, Wijesinghe, Essilfie, Davis, Nasreen, Bernhardt, Hansbro, McEwan and Kappler. Haemophilus influenzae is a host adapted human mucosal pathogen involved in a variety of acute and chronic respiratory tract infections, including chronic obstructive pulmonary disease and asthma, all of which rely on its ability to efficiently establish continuing interactions with the host. Here we report the characterization of a novel molybdenum enzyme, TorZ/MtsZ that supports interactions of H. influenzae with host cells during growth in oxygen-limited environments. Strains lacking TorZ/MtsZ showed a reduced ability to survive in contact with epithelial cells as shown by immunofluorescence microscopy and adherence/invasion assays. This included a reduction in the ability of the strain to invade human epithelial cells, a trait that could be linked to the persistence of H. influenzae. The observation that in a murine model of H. influenzae infection, strains lacking TorZ/MtsZ were almost undetectable after 72 h of infection, while ~3.6 × 103 CFU/mL of the wild type strain were measured under the same conditions is consistent with this view. To understand how TorZ/MtsZ mediates this effect we purified and characterized the enzyme, and were able to show that it is an S- and N-oxide reductase with a stereospecificity for S-sulfoxides. The enzyme converts two physiologically relevant sulfoxides, biotin sulfoxide and methionine sulfoxide (MetSO), with the kinetic parameters suggesting that MetSO is the natural substrate of this enzyme. TorZ/MtsZ was unable to repair sulfoxides in oxidized Calmodulin, suggesting that a role in cell metabolism/energy generation and not protein repair is the key function of this enzyme. Phylogenetic analyses showed that H. influenzae TorZ/MtsZ is only distantly related to the Escherichia coli TorZ TMAO reductase, but instead is a representative of a new, previously uncharacterized clade of molybdenum enzyme that is widely distributed within the Pasteurellaceae family of pathogenic bacteria. It is likely that MtsZ/TorZ has a similar role in supporting host/pathogen interactions in other members of the Pasteurellaceae, which includes both human and animal pathogens

    Molecular Origin of Polyglutamine Aggregation in Neurodegenerative Diseases

    Get PDF
    Expansion of polyglutamine (polyQ) tracts in proteins results in protein aggregation and is associated with cell death in at least nine neurodegenerative diseases. Disease age of onset is correlated with the polyQ insert length above a critical value of 35–40 glutamines. The aggregation kinetics of isolated polyQ peptides in vitro also shows a similar critical-length dependence. While recent experimental work has provided considerable insights into polyQ aggregation, the molecular mechanism of aggregation is not well understood. Here, using computer simulations of isolated polyQ peptides, we show that a mechanism of aggregation is the conformational transition in a single polyQ peptide chain from random coil to a parallel β-helix. This transition occurs selectively in peptides longer than 37 glutamines. In the β-helices observed in simulations, all residues adopt β-strand backbone dihedral angles, and the polypeptide chain coils around a central helical axis with 18.5 ± 2 residues per turn. We also find that mutant polyQ peptides with proline-glycine inserts show formation of antiparallel β-hairpins in their ground state, in agreement with experiments. The lower stability of mutant β-helices explains their lower aggregation rates compared to wild type. Our results provide a molecular mechanism for polyQ-mediated aggregation

    Adhesive capsulitis and dynamic splinting: a controlled, cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adhesive Capsulitis (AC) affects patient of all ages, and stretching protocols are commonly prescribed for this condition. Dynamic splinting has been shown effective in contracture reduction from pathologies including Trismus to plantar fasciitis. The purpose of this study was to examine the efficacy of dynamic splinting on patients with AC.</p> <p>Methods</p> <p>This controlled, cohort study, was conducted at four physical therapy, sports medicine clinics in Texas and California. Sixty-two patients diagnosed with Stage II Adhesive Capsulitis were grouped by intervention. The intervention categories were as follows: Group I (Control); Group II (Physical Therapy exclusively with standardized protocols); Group III; (Shoulder Dynasplint system exclusively); Group IV (Combined treatment with Shoulder Dynasplint and standardized Physical Therapy). The duration of this study was 90 days for all groups, and the main outcome measures were change in active, external rotation.</p> <p>Results</p> <p>Significant difference was found for all treatment groups (p < 0.001) following a one-way ANOVA. The greatest change with the smallest standard deviation was for the combined treatment group IV, (mean change of 29°).</p> <p>Conclusion</p> <p>The difference for the combined treatment group was attributed to patients' receiving the best PT combined with structured "home therapy" that contributed an additional 90 hours of end-range stretching. This adjunct should be included in the standard of care for adhesive Capsulitis.</p> <p>Trial Registration</p> <p><b>Trial Number</b>: NCT00873158</p

    Isolated hepatic actinomycosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Actinomyces are slow growing, non-spore forming, gram-positive, branching bacilli that thrive in anaerobic and microareophilic conditions. Actinomyces are more commonly associated with oral and cervicofacial infections. Hepatic involvement in infections of the abdomen (known as isolated hepatic actinomycosis) is rare, accounting for only 5% of all cases of actinomycosis.</p> <p>Case presentation</p> <p>We present the case of a 75-year-old Caucasian woman with a 3-month history of night sweats, fever, chills, abdominal bloating, anorexia, weight-loss, and early satiety. The patient was found to have isolated hepatic actinomycosis infection after undergoing a laparotomy with a biopsy of the liver. The patient has now recovered.</p> <p>Conclusion</p> <p>Isolated hepatic actinomycosis is a rare and often overlooked etiology for a liver mass. Given its subacute presentation and nondescript symptomatology, physicians should be aware of this differential and the potential pitfalls in diagnosis and management.</p

    Topical microbicides to prevent the transmission of HIV: formulation gaps and challenges

    Get PDF
    The efforts of the topical microbicide field to identify a safe and effective topical microbicide were realized in July of 2010 with the reporting of the results of the Centre for the AIDS Programme of Research in South Africa 004 trial. In this trial, a 1% tenofovir gel was found to reduce women’s risk for HIV acquisition by 39% compared to placebo. To understand the impact of this trial on future microbicide development, we must view it from the historical perspective of previous phases 2 and 3 clinical trials with detergents and sulfated polyanions. This knowledge and emerging information must then be parlayed into the next steps needed to create a safe, effective, and acceptable topical microbicide. This review will look at the lessons learned from preclinical and clinical development of topical microbicides, focusing on two significant future challenges: (1) topical microbicide formulation safety and (2) the critical role that adherence to product use has in determining safety and efficacy in clinical trials and ultimately commercial viability of the licensed product. In addition to framing these issues within our current understanding of formulation and prevention of HIV acquisition, recent advances in our understanding of the mechanism of HIV transmission and how it informs on future formulation strategies will be briefly discussed
    corecore