90 research outputs found

    Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon

    Get PDF
    In water systems, water quality and geochemical properties of sediments determine the speciation of trace metals, metal transport, and sediment-water exchange, influencing metal availability and its potential effects on biota. Studies from temperate climates have shown that iron-ore mining and tailing wastewaters, besides being a source of trace metals, usually show high levels of dissolved ions and particulate suspended matter, thus having the potential of indirectly changing metal bioavailability. For the first time in the tropics, we identified the effects of iron-ore mining and processing on metal bioavailability in a coastal lagoon. With an extensive sampling scheme, we investigated the potential sources of metals; the links among metal levels in water, sediments, and invertebrates; and the contrasting effects on metal speciation and bioavailability. The metals Fe, Mn, Al, Cr, Zn, Cu, Ni, Pb, Cd, Hg, and As were measured in water, sediments (surface and profiles), and invertebrates from Mãe-Bá Lagoon and in the sites directly influenced by the mining operations (tailing dams and nearby rivers). In addition, samples from two other lagoons, considered pristine, were analyzed. The study area is located in the southeast of Brazil (Iron Quadrangle Region and a coastal area of Espírito Santo State). General water characteristics included pH, dissolved organic carbon, alkalinity, and anion composition. Water metal speciation was assessed by a speciation model (Chemical Equilibria in Aquatic Systems). Grain-size distribution, organic carbon, carbonate, and acid volatile sulfide (AVS) were determined in sediments. Statistical methods included comparison of means by Mann-Whitney test, ordination and correlation analyses, and analysis of regression for geochemical normalization of metals with grain size. The dissolved metal concentrations, the total metal levels in sediments, and the normalization based on the fine sediment fraction showed that the mining operations constitute potential sources of Fe, Mn, Cr, Cu, Ni, Pb, As, and Hg to Mãe-Bá Lagoon. However, trace metal availability was reduced because of increased pH, hardness, and sulfide content (356 μmol/g) in the sites influenced by the mining. The lagoon showed similar water chemistry as in the mining sites, with metal bioavailability further decreased by the presence of dissolved organic carbon and chloride. Although AVS levels in the lagoon were low (0.48-56 μmol/g), metal bioavailability was reduced because of the presence of organic matter. Metal levels in invertebrates confirmed the predicted low metal bioavailability in Mãe-Bá Lagoon. The lagoon was considered moderately contaminated only by Hg and As. The iron-ore mining and processing studied here constitute potential sources of metal pollution into the tropical lagoon. Contrary to expectations, however, it also contributes to reducing the overall metal bioavailability in the lagoon. These findings are believed to be useful for evaluating metal exposure in a more integrated way, identifying not only the sources of pollution but also how they can affect the components involved in metal speciation and bioavailability in water systems, leading to new insights

    Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice

    Get PDF
    BACKGROUND AND METHODS:Pulmonary deposited carbon nanotubes (CNTs) are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice: one short (850 nm) and tangled, and two longer (4 μm and 5.7 μm) and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM) 1, 3 and 28 days after instillation. RESULTS:TEM analysis revealed that the three CNTs followed the same overall progression pattern over time. Initially, CNTs were taken up either by a diffusion mechanism or via endocytosis. Then CNTs were agglomerated in vesicles in macrophages. Lastly, at 28 days post-exposure, evidence suggesting CNT escape from vesicle enclosures were found. The longer and thicker CNTs more often perturbed and escaped vesicular enclosures in macrophages compared to the smaller CNTs. Bronchoalveolar lavage (BAL) showed that the CNT exposure induced both an eosinophil influx and also eosinophilic crystalline pneumonia. CONCLUSION:Two very different types of multiwalled CNTs had very similar pattern of cellular interactions in lung tissue, with the longer and thicker CNTs resulting in more severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP)

    Chromosomal evidence for a putative cryptic species in the Gymnotus carapo species-complex (Gymnotiformes, Gymnotidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study we examined the karyotypes of morphologically indistinguishable populations of the electric knifefish <it>Gymnotus carapo sensu stricto </it>from the Eastern Amazon of Brazil. These were identified unambiguously on the basis of external morphology, meristics, and pigmentation.</p> <p>Results</p> <p>Specimens from one of five localities exhibited a karyotype previously not documented for <it>Gymnotus </it>species in the Amazon basin: 2n = 40 (34M/SM+6ST/A). Samples from the other four localities exhibited a different karyotype: 2n = 42 (30M/SM+12ST/A), which we had previously described. Specimens from all five localities presented constitutive heterochromatin in the centromeric region of almost all chromosomes, including in the distal and interstitial regions. Staining with 4'6-Diamidino-2-phenylindole revealed C-positive banding. In both karyotypes the Nucleolar Organizer Region (NOR) was located on the short arm of pair 20, and Chromomycin A<sub>3 </sub>stained the NORs. Fluorescent <it>in situ </it>hybridization with telomeric probes showed an Interstitial Telomeric Sequence (ITS) in the proximal short arm of a metacentric pair in the 2n = 40 karyotype.</p> <p>Conclusion</p> <p>The difference between the two karyotypes on the diploid number and chromosome morphology can be explained by rearrangements of the fusion-fission type and also by pericentric inversions. The presence of ITS in a metacentric pair of the 2n = 40 karyotype suggests that the difference in the diploid number of the karyotypes results from a fusion. The consistent 2n = 42 karyotype at four localities suggests an interbreeding population. However, because fusion-fission and pericentric inversions of this nature typically result in reproductive isolation, we speculate that the form with the 2n = 40 karyotype is a different species to that of the 2n = 42 form. Nonetheless, we did not observe evident differences in external morphology, meristics and pigmentation between the two forms, which suggest that they represent cryptic sympatric species in the <it>G. carapo </it>species complex. We speculate that the chromosomal speciation occurred recently, allowing insufficient time for the fixation of other differences following post-zygotic isolation.</p

    Isolation and Characterization of New Leptospira Genotypes from Patients in Mayotte (Indian Ocean)

    Get PDF
    Leptospirosis has been recognized as an increasing public health problem affecting poor people from developing countries and tropical regions. However, the epidemiology of leptospirosis remains poorly understood in remote parts of the world. In this study of patients from the island of Mayotte, we isolated 22 strains from the blood of patients during the acute phase of illness. The pathogenic Leptospira strains were characterized by serology and various molecular typing methods. Based on serological data, serogroup Mini appears to be the dominant cause of leptospirosis in Mayotte. Further molecular characterization of these isolates allowed the identification of 10 pathogenic Leptospira genotypes that could correspond to previously unknown serovars. Further progress in our understanding of the epidemiology of Leptospira circulating genotypes in highly endemic regions should contribute to the development of novel strategies for the diagnosis and prevention of this neglected emerging disease

    Reduced prefrontal gyrification in obsessive–compulsive disorder

    Get PDF
    Structural magnetic resonance imaging (MRI) studies reveal evidence for brain abnormalities in obsessive–compulsive disorder (OCD), for instance, reduction of gray matter volume in the prefrontal cortex. Disturbances of gyrification in the prefrontal cortex have been described several times in schizophrenia pointing to a neurodevelopmental etiology, while gyrification has not been studied so far in OCD patients. In 26 OCD patients and 38 healthy control subjects MR-imaging was performed. Prefrontal cortical folding (gyrification) was measured bilaterally by an automated version of the automated-gyrification index (A-GI), a ratio reflecting the extent of folding, from the slice containing the inner genu of the corpus callosum up to the frontal pole. Analysis of covariance (ANCOVA, independent factor diagnosis, covariates age, duration of education) demonstrated that compared with control subjects, patients with OCD displayed a significantly reduced A-GI in the left hemisphere (p = 0.021) and a trend for a decreased A-GI in the right hemisphere (p = 0.076). Significant correlations between prefrontal lobe volume and A-GI were only observed in controls, but not in OCD patients. In conclusion, prefrontal hypogyrification in OCD patients may be a structural correlate of the impairment in executive function of this patient group and may point to a neurodevelopmental origin of this disease

    A hematopoietic contribution to microhemorrhage formation during antiviral CD8 T cell-initiated blood-brain barrier disruption

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extent to which susceptibility to brain hemorrhage is derived from blood-derived factors or stromal tissue remains largely unknown. We have developed an inducible model of CD8 T cell-initiated blood-brain barrier (BBB) disruption using a variation of the Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis. This peptide-induced fatal syndrome (PIFS) model results in severe central nervous system (CNS) vascular permeability and death in the C57BL/6 mouse strain, but not in the 129 SvIm mouse strain, despite the two strains' having indistinguishable CD8 T-cell responses. Therefore, we hypothesize that hematopoietic factors contribute to susceptibility to brain hemorrhage, CNS vascular permeability and death following induction of PIFS.</p> <p>Methods</p> <p>PIFS was induced by intravenous injection of VP2<sub>121-130 </sub>peptide at 7 days post-TMEV infection. We then investigated brain inflammation, astrocyte activation, vascular permeability, functional deficit and microhemorrhage formation using T2*-weighted magnetic resonance imaging (MRI) in C57BL/6 and 129 SvIm mice. To investigate the contribution of hematopoietic cells in this model, hemorrhage-resistant 129 SvIm mice were reconstituted with C57BL/6 or autologous 129 SvIm bone marrow. Gadolinium-enhanced, T1-weighted MRI was used to visualize the extent of CNS vascular permeability after bone marrow transfer.</p> <p>Results</p> <p>C57BL/6 and 129 SvIm mice had similar inflammation in the CNS during acute infection. After administration of VP2<sub>121-130 </sub>peptide, however, C57BL/6 mice had increased astrocyte activation, CNS vascular permeability, microhemorrhage formation and functional deficits compared to 129 SvIm mice. The 129 SvIm mice reconstituted with C57BL/6 but not autologous bone marrow had increased microhemorrhage formation as measured by T2*-weighted MRI, exhibited a profound increase in CNS vascular permeability as measured by three-dimensional volumetric analysis of gadolinium-enhanced, T1-weighted MRI, and became moribund in this model system.</p> <p>Conclusion</p> <p>C57BL/6 mice are highly susceptible to microhemorrhage formation, severe CNS vascular permeability and morbidity compared to the 129 SvIm mouse. This susceptibility is transferable with the bone marrow compartment, demonstrating that hematopoietic factors are responsible for the onset of brain microhemorrhage and vascular permeability in immune-mediated fatal BBB disruption.</p

    Orientation of the Calcium Channel β Relative to the α12.2 Subunit Is Critical for Its Regulation of Channel Activity

    Get PDF
    BACKGROUND: The Ca(v)beta subunits of high voltage-activated Ca(2+) channels control the trafficking and biophysical properties of the alpha(1) subunit. The Ca(v)beta-alpha(1) interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined. One hypothesis is that betas regulate channel gating by modulating movements of IS6. A key requirement for this direct-coupling model is that the linker connecting IS6 to the alpha-interaction domain (AID) be a rigid structure. METHODOLOGY/PRINCIPAL FINDINGS: The present study tests this hypothesis by altering the flexibility and orientation of this region in alpha(1)2.2, then testing for Ca(v)beta regulation using whole cell patch clamp electrophysiology. Flexibility was induced by replacement of the middle six amino acids of the IS6-AID linker with glycine (PG6). This mutation abolished beta2a and beta3 subunits ability to shift the voltage dependence of activation and inactivation, and the ability of beta2a to produce non-inactivating currents. Orientation of Ca(v)beta with respect to alpha(1)2.2 was altered by deletion of 1, 2, or 3 amino acids from the IS6-AID linker (Bdel1, Bdel2, Bdel3, respectively). Again, the ability of Ca(v)beta subunits to regulate these biophysical properties were totally abolished in the Bdel1 and Bdel3 mutants. Functional regulation by Ca(v)beta subunits was rescued in the Bdel2 mutant, indicating that this part of the linker forms beta-sheet. The orientation of beta with respect to alpha was confirmed by the bimolecular fluorescence complementation assay. CONCLUSIONS/SIGNIFICANCE: These results show that the orientation of the Ca(v)beta subunit relative to the alpha(1)2.2 subunit is critical, and suggests additional points of contact between these subunits are required for Ca(v)beta to regulate channel activity

    A Genome-Wide Linkage Scan for Distinct Subsets of Schizophrenia Characterized by Age at Onset and Neurocognitive Deficits

    Get PDF
    As schizophrenia is genetically and phenotypically heterogeneous, targeting genetically informative phenotypes may help identify greater linkage signals. The aim of the study is to evaluate the genetic linkage evidence for schizophrenia in subsets of families with earlier age at onset or greater neurocognitive deficits.Patients with schizophrenia (n  =  1,207) and their first-degree relatives (n  =  1,035) from 557 families with schizophrenia were recruited from six data collection field research centers throughout Taiwan. Subjects completed a face-to-face semi-structured interview, the Continuous Performance Test (CPT), the Wisconsin Card Sorting Test, and were genotyped with 386 microsatellite markers across the genome.A maximum nonparametric logarithm of odds (LOD) score of 4.17 at 2q22.1 was found in 295 families ranked by increasing age at onset, which had significant increases in the maximum LOD score compared with those obtained in initial linkage analyses using all available families. Based on this subset, a further subsetting by false alarm rate on the undegraded and degraded CPT obtained further increase in the nested subset-based LOD on 2q22.1, with a score of 7.36 in 228 families and 7.71 in 243 families, respectively.We found possible evidence of linkage on chromosome 2q22.1 in families of schizophrenia patients with more CPT false alarm rates nested within the families with younger age at onset. These results highlight the importance of incorporating genetically informative phenotypes in unraveling the complex genetics of schizophrenia
    corecore