43 research outputs found

    Mother-in-law adjustment of young marrieds

    Get PDF
    The purpose of the study was to investigate the adjustment of young married high school graduates to their mothers-in-law. Data were gathered from a schedule consisting of an information sheet and four tests, which were as follows: The Stryker Adjustment Checklist, The Stryker Dependency Checklist (one for father and one for mother), and The Locke-Wallace short form of the "Marital Adjustment Test." The sample consisted of 102 subjects, forty-five males and fifty-seven females. All were residents of Guilford County, North Carolina and were twenty-five years of age or younger. The respondents had been married three years or less and each had a mother-in-law living within fifty miles of their residence. Each respondent was a high school graduate, but had completed no more than two years of college or trade school, and were not four-year- college bound

    Selective Killing of Cancer Cells by Ashwagandha Leaf Extract and Its Component Withanone Involves ROS Signaling

    Get PDF
    Ashwagandha is a popular Ayurvedic herb used in Indian traditional home medicine. It has been assigned a variety of health-promoting effects of which the mechanisms remain unknown. We previously reported the selective killing of cancer cells by leaf extract of Ashwagandha (i-Extract) and its purified component Withanone. In the present study, we investigated its mechanism by loss-of-function screening (abrogation of i-Extract induced cancer cell killing) of the cellular targets and gene pathways.Randomized ribozyme library was introduced into cancer cells prior to the treatment with i-Extract. Ribozymes were recovered from cells that survived the i-Extract treatment. Gene targets of the selected ribozymes (as predicted by database search) were analyzed by bioinformatics and pathway analyses. The targets were validated for their role in i-Extract induced selective killing of cancer cells by biochemical and molecular assays. Fifteen gene-targets were identified and were investigated for their role in specific cancer cell killing activity of i-Extract and its two major components (Withaferin A and Withanone) by undertaking the shRNA-mediated gene silencing approach. Bioinformatics on the selected gene-targets revealed the involvement of p53, apoptosis and insulin/IGF signaling pathways linked to the ROS signaling. We examined the involvement of ROS-signaling components (ROS levels, DNA damage, mitochondrial structure and membrane potential) and demonstrate that the selective killing of cancer cells is mediated by induction of oxidative stress.Ashwagandha leaf extract and Withanone cause selective killing of cancer cells by induction of ROS-signaling and hence are potential reagents that could be recruited for ROS-mediated cancer chemotherapy

    A Survey of Avian Influenza in Tree Sparrows in China in 2011

    Get PDF
    Tree sparrows (Passer montanus) are widely distributed in all seasons in many countries. In this study, a survey and relevant experiments on avian influenza (AI) in tree sparrows were conducted. The results suggested that the receptor for avian influenza viruses (AIVs), SAα2,3Gal, is abundant in the respiratory tract of tree sparrows, and most of the tree sparrows infected experimentally with two H5 subtype highly pathogenic avian influenza (HPAI) viruses died within five days after inoculation. Furthermore, no AIVs were isolated from the rectum eluate of 1300 tree sparrows, but 94 serological positives of AI were found in 800 tree sparrows. The serological positives were more prevalent for H5 subtype HPAI (94/800) than for H7 subtype AI (0/800), more prevalent for clade 2.3.2.1 H5 subtype HPAI (89/800) than for clade 2.3.4 (1/800) and clade 7.2 (4/800) H5 subtype HPAI, more prevalent for clade 2.3.2.1 H5 subtype HPAI in a city in southern China (82/800) than in a city in northern China (8/800). The serological data are all consistent with the distribution of the subtypes or clades of AI in poultry in China. Previously, sparrows or other passerine birds were often found to be pathogenically negative for AIVs, except when an AIV was circulating in the local poultry, or the tested passerine birds were from a region near waterfowl-rich bodies of water. Taken together, the data suggest that tree sparrows are susceptible to infection of AIVs, and surveys targeting sparrows can provide good serological data about the circulation of AIVs in relevant regions

    Safety and efficacy assessment of standardized herbal formula PM012

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was conducted to evaluate the efficacy of the herbal formula PM012 on an Alzheimer's disease model, human presenilin 2 mutant transgenic mice (hPS2m), and also to evaluate the toxicity of PM012 in Sprague-Dawely rats after 4 or 26 weeks treatment with repeated oral administration.</p> <p>Methods</p> <p>Spatial learning and memory capacities of hPS2m transgenic mice were evaluated using the Morris Water Maze. Simultaneously, PM012 was repeatedly administered orally to male and female SD rats (15/sex/group) at doses of 0 (vehicle control), 500, 1,000 and 2,000 mg/kg/day for 4 or 26 weeks. To evaluate the recovery potential, 5 animals of each sex were assigned to vehicle control and 2,000 mg/kg/day groups during the 4-week recovery period.</p> <p>Results</p> <p>The results showed that PM012-treated hPS2m transgenic mice showed significantly reduced escape latency when compared with the hPS2m transgenic mice. The repeated oral administration of PM012 over 26 weeks in male and female rats induced an increase and increasing trend in thymus weight in the female treatment groups (main and recovery groups), but the change was judged to be toxicologically insignificant. In addition, the oral administration of the herbal medicine PM012 did not cause adverse effects as assessed by clinical signs, mortality, body weight, food and water consumption, ophthalmology, urinalysis, hematology, serum biochemistry, blood clotting time, organ weights and histopathology. The No Observed Adverse Effects Levels of PM012 was determined to be 2,000 mg/kg/day for both sexes, and the target organ was not identified.</p> <p>Conclusion</p> <p>These results suggest that PM012 has potential for use in the treatment of the Alzheimer's disease without serious adverse effects.</p

    Mild Hypothermia Attenuates Mitochondrial Oxidative Stress by Protecting Respiratory Enzymes and Upregulating MnSOD in a Pig Model of Cardiac Arrest

    Get PDF
    Mild hypothermia is the only effective treatment confirmed clinically to improve neurological outcomes for comatose patients with cardiac arrest. However, the underlying mechanism is not fully elucidated. In this study, our aim was to determine the effect of mild hypothermia on mitochondrial oxidative stress in the cerebral cortex. We intravascularly induced mild hypothermia (33°C), maintained this temperature for 12 h, and actively rewarmed in the inbred Chinese Wuzhishan minipigs successfully resuscitated after 8 min of untreated ventricular fibrillation. Cerebral samples were collected at 24 and 72 h following return of spontaneous circulation (ROSC). We found that mitochondrial malondialdehyde and protein carbonyl levels were significantly increased in the cerebral cortex in normothermic pigs even at 24 h after ROSC, whereas mild hypothermia attenuated this increase. Moreover, mild hypothermia attenuated the decrease in Complex I and Complex III (i.e., major sites of reactive oxygen species production) activities of the mitochondrial respiratory chain and increased antioxidant enzyme manganese superoxide dismutase (MnSOD) activity. This increase in MnSOD activity was consistent with the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein expressions, and with the increase of Nrf2 nuclear translocation in normothermic pigs at 24 and 72 h following ROSC, whereas mild hypothermia enhanced these tendencies. Thus, our findings indicate that mild hypothermia attenuates mitochondrial oxidative stress in the cerebral cortex, which may be associated with reduced impairment of mitochondrial respiratory chain enzymes, and enhancement of MnSOD activity and expression via Nrf2 activation

    Comparative mitochondrial proteomics: perspective in human diseases

    Get PDF
    Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets

    Total synthesis of (-)-sessilifoliamide C and (-)-8-epi-stemoamide

    No full text
    A convergent route featuring [3,3]-sigmatropic rearrangements of a linchpin azepinopyrrolidine served to install two of the four contiguous stereocenters present in the tricyclic Stemona alkaloids sessilifoliamide and stemoamide. In addition to the first total synthesis of (-)-sessilifoliamide C, a potential biosynthetic relationship between the sessilifoliamides and previously reported Stemona alkaloids is presented. © 2011 American Chemical Society

    Targeting mitochondria

    No full text
    (Figure Presented) Reactive oxygen spedes (ROS) and reactive nitrogen spedes (RNS) are closely linked to degenerative diseases such as Alzheimer's disease, Parkinson's, neuronal death induding ischemic and hemorrhagic stroke, acute and chronic degenerative cardiac myocyte death, and cancer. As a byproduct of oxidative phosphorylation, a steady stream of reactive spedes emerge from our cellular energy plants, the mitochondria. ROS and RNS potentially cause damage to all cellular components. Structure alteration, biomolecule fragmentation, and oxidation of side chains are trade-offs of cellular energy production. ROS and RNS escape results in the activation of cytosolic stress pathways, DNA damage, and the upregulation of JNK, p38, and p53. Incomplete scavenging of ROS and RNS particularly affects the mitochondrial lipid cardiolipin (CL), triggers the release of mitochondrial cytochrome c, and activates the intrinsic death pathway. Due to the active redox environment and the excess of NADH and ATP at the inner mitochondrial membrane, a broad range of agents including electron acceptors, electron donors, and hydride acceptors can be used to influence the biochemical pathways. The key to therapeutic value is to enrich selective redox modulators at the target sites. Our approach is based on conjugating nitroxides to segments of natural products with relatively high affinity for mitochondrial membranes. For example, a modified gramicidin S segment was successfully used for this purpose and proven to be effective in preventing superoxide production in cells and CL oxidation in mitochondria and in protecting cells against a range of pro-apoptotic triggers such as actinomycin D, radiation, and staurosporine. More importantly, these mitochondria-targeted nitroxide/gramicidin conjugates were able to protect against apoptosis in vivo by preventing CL oxidation induced by intestinal hemorrhagic shock. Optimization of nitroxide carriers could lead to a new generation of effective antiapoptotic agents acting at an early mitochondrial stage. Alternative chemistry-based approaches to targeting mitochondria include the use of proteins and peptides, as well as the attachment of payloads to lipophilic cationic compounds, sulfonylureas, anthracyclines, and other agents with proven or hypothetical affinities for mitochondria. Manganese superoxide dismutase (MnSOD), SS tetrapeptides with 2′,6′-dimethyltyrosine (Dmt) residues, rhodamine, triphenylphosphonium salts, nonopioid analgesics, adriamycin, and diverse electron-rich aromatics and stilbenes were used to influence mitochondrial biochemistry and the biology of aging. Some general structural principles for effective therapeutic agents are now emerging. Among these are the presence of basic or positively charged functional groups, hydrophobic substructures, and, most promising for future selective strategies, classes of compounds that are actively shuttled into mitochondria, bind to mitochondria-specific proteins, or show preferential affinity to mitochondria-specific lipids. © 2008 American Chemical Society
    corecore