11 research outputs found

    Predation and the Maintenance of Color Polymorphism in a Habitat Specialist Squamate

    Get PDF
    Multiple studies have addressed the mechanisms maintaining polymorphism within a population. However, several examples exist where species inhabiting diverse habitats exhibit local population-specific polymorphism. Numerous explanations have been proposed for the maintenance of geographic variation in color patterns. For example, spatial variation in patterns of selection or limited gene flow can cause entire populations to become fixed for a single morph, resulting in separate populations of the same species exhibiting separate and distinct color morphs. The mottled rock rattlesnake (Crotalus lepidus lepidus) is a montane species that exhibits among-population color polymorphism that correlates with substrate color. Habitat substrate in the eastern part of its range is composed primarily of light colored limestone and snakes have light dorsal coloration, whereas in the western region the substrate is primarily dark and snakes exhibit dark dorsal coloration. We hypothesized that predation on high contrast color and blotched patterns maintain these distinct color morphs. To test this we performed a predation experiment in the wild by deploying model snakes at 12 sites evenly distributed within each of the two regions where the different morphs are found. We employed a 2×2 factorial design that included two color and two blotched treatments. Our results showed that models contrasting with substrate coloration suffered significantly more avian attacks relative to models mimicking substrates. Predation attempts on blotched models were similar in each substrate type. These results support the hypothesis that color pattern is maintained by selective predation

    Tigers of Sundarbans in India: Is the Population a Separate Conservation Unit?

    Get PDF
    The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU) following the adaptive evolutionary conservation (AEC) concept.Wildlife Institute of India, Dehra Dun (India)
    corecore