21 research outputs found

    FGFR3IIIS: a novel soluble FGFR3 spliced variant that modulates growth is frequently expressed in tumour cells

    Get PDF
    Fibroblast growth factor receptor 3 (FGFR3) is one of four high-affinity tyrosine kinase receptors for the FGF family of ligands, frequently associated with growth arrest and induction of differentiation. The extracellular immunoglobulin (IgG)-like domains II and III are responsible for ligand binding; alternative usage of exons IIIb and IIIc of the Ig-like domain III determining the ligand-binding specificity of the receptor. By reverse transcriptase polymerase chain reaction (RTโ€“PCR) a novel FGFR3IIIc variant FGFR3IIIS, expressed in a high proportion of tumours and tumour cell lines but rarely in normal tissues, has been identified. Unlike recently described nonsense transcripts of FGFR3, the coding region of FGFR3IIIS remains in-frame producing a novel protein. The protein product is coexpressed with FGFR3IIIc in the membrane and soluble cell fractions; expression in the soluble fraction is decreased after exposure to bFGF but not aFGF. Knockout of FGFR3IIIS using antisense has a growth-inhibitory effect in vitro, suggesting a dominant-negative function for FGFR3IIIS inhibiting FGFR3-induced growth arrest. In summary, alternative splicing of the FGFR3 Ig-domain III represents a mechanism for the generation of receptor diversity. FGFR3IIIS may regulate FGF and FGFR trafficking and function, possibly contributing to the development of a malignant phenotype

    Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer

    Get PDF
    Overexpression of fibroblast growth factors (FGFs) has been implicated in prostate carcinogenesis. FGFs function via their high-affinity interactions with receptor tyrosine kinases, FGFR1โ€“4. Expression of FGFR1 and FGFR2 in prostate cancer (CaP) was not found to be associated with clinical parameters. In this report, we further investigated for abnormal FGFR expression in prostate cancer and explore their significance as a potential target for therapy. The expression levels of FGFR3 and FGFR4 in CaP were examined and corroborated to clinical parameters. FGFR3 immunoreactivity in benign prostatic hyperplasia (BPH) and CaP (n=26 and 57, respectively) had similar intensity and pattern. Overall, FGFR4 expression was significantly upregulated in CaP when compared to BPH. A significant positive correlation between FGFR4 expression and Gleason score was noted: Gleason score 7โ€“10 tumours compared to BPH (P<0.0001, Fisher's exact test), Gleason score 4โ€“6 tumours compared to BPH (P<0.0004), and Gleason 7โ€“10 compared to Gleason 4โ€“6 tumours (P<0.005). FGFR4 overexpression was associated with an unfavourable outcome with decreased disease-specific survival (P<0.04, log rank test). FGF-induced signalling is targeted using soluble FGF receptor (sFGFR), potent inhibitor of FGFR function. We have previously shown that sFGFR expression via a replication-deficient adenoviral vector (AdlllcRl) suppresses in vitro FGF-induced signalling and function in human CaP DU145 cells. We tested the significance of inhibiting FGF function along with conventional therapeutic modalities in CaP, and confirmed synergistic effects on in vitro cell growth (proliferation and colony formation) by combining sFGFR expression and treatment with either Paclitaxel (Taxolยฎ) or ฮณ-irradiation. In summary, our data support the model of FGF system as valid target for therapy in CaP

    Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human fibroblast growth factor (FGF) and its receptor (FGFR) play an important role in tumorigenesis. Deregulation of the <it>FGFR2 </it>gene has been identified in a number of cancer sites. Overexpression of the <it>FGFR4 </it>protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the <it>FGFR2 </it>and <it>FGFR4 </it>genes and development of various cancers.</p> <p>Methods</p> <p>We evaluated the associations of four genetic variants in the <it>FGFR2 </it>gene highly related to breast cancer risk and the three common tag-SNPs in the <it>FGFR4 </it>gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study (NHS) among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 controls.</p> <p>Results</p> <p>We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer.</p> <p>Conclusion</p> <p>Given the power of this study, we did not detect any contribution of genetic variants in the <it>FGFR2 </it>or <it>FGFR4 </it>genes to inherited predisposition to skin cancer among Caucasian women.</p

    Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers

    Full text link

    Insights into the development of molecular therapies for craniosynostosis

    No full text

    Stromelysin-1 (MMP-3) is a target and a regulator of Wnt1-induced epithelial-mesenchymal transition (EMT)

    No full text
    Matrix metalloproteinases (MMPs) play a well-defined role in later stages of tumor progression. However, there has been evidence that they also contribute to earlier stages of malignant transformation. The Wnt signaling transduction pathway plays a critical role in development and in the pathogenesis of many epithelial cancers. Here we have used Wnt1-induced epithelial-mesenchymal transition (EMT) in C57MG murine mammary epithelial cells to study the role of MMPs in this early step of malignant progression. Overexpression of Wnt1 in C57MG cells promoted EMT, the translocation of ฮฒ-catenin from the cell membrane to the nucleus and its transcriptional activity, cell proliferation and cell motility. Simultaneously, we observed an increased expression of stromelysin-1 (MMP-3) and a 5.5-fold increase in MMP-3 promoter activity in C57MG cells expressing Wnt1 compared with C57MG cells. Treatment of Wnt-overexpressing cells with MMP inhibitor AG3340 decreased MMP-3 expression. We also found evidence that MMP-3 and Wnt3a cooperate in enhancing the transcriptional activity of ฮฒ-catenin in C57MG cells. Consistently, the effects of Wnt1 on EMT, proliferation and migration were inhibited by MMP inhibitors, or upon downregulation of MMP-3 by siRNA. These results suggest that MMP-3 is both a direct transcriptional target and a necessary contributor of the Wnt/ฮฒ-catenin signaling pathway
    corecore