5 research outputs found

    Controlling the non-parametric modeling of double link flexible robotic manipulator using hybrid PID tuned by P-type ILA

    Get PDF
    Utilization of robotic manipulator with multi-link structure encompasses a great influence in most of the present industries. However, controlling the motion of multi-link manipulator has become a troublesome errand particularly once the flexible structure is employed. As of now, the framework utilizes the complicated arithmetic to resolve desired hub angle with the coupling result and vibration within the framework. Hence, this research aims to develop a dynamic system and controller for double-link flexible robotics manipulator (DLFRM) with the enhancement on hub angle position and vibration concealment. The research utilised neural network because the model estimation supported NARX model structure. In the controllers’ development, this research focuses on self-tuning controller. P-Type iterative learning algorithm (ILA) control theme was enforced to adapt the controller parameters to fulfill the required performances once there is changes to the system. The hybrid of proportional-integral-derivate (PID) controller was developed for hub motion and end-point vibration suppression of every link respectively. The controllers were tested in MATLAB/Simulink simulation setting. The performance of the controller was compared with the fixed hybrid PID-PID controller in term of input tracking and vibration concealment. The results indicated that the proposed controller was effective to maneuver the double-link flexible robotic manipulator to the specified position with reduction of the vibration at the tip of the DLFRM structure

    Utilizing P-Type ILA in tuning Hybrid PID Controller for Double Link Flexible Robotic Manipulator

    Get PDF
    © 2018 IEEE. The usage of robotic manipulator with multi-link structure has a great influence in most of the current industries. However, controlling the motion of multi-link manipulator has become a challenging task especially when the flexible structure is used. Currently, the system utilizes the complex mathematics to solve desired hub angle with the coupling effect and vibration in the system. Thus, this research aims to develop the controller for double-link flexible robotics manipulator (DLFRM) with the improvement on hub angle position and vibration suppression. The research utilized DLFRM modeling based on NARX model structure estimated by neural network. In the controllers' development, this research focuses on adaptive controller. PType iterative learning algorithm (ILA) control scheme is implemented to adapt the controller parameters to meet the desired performances when there are changes to the system. The hybrid PID-PID controller is developed for hub motion and end point vibration suppression of each link respectively. The controllers are tested in MATLAB/Simulink simulation environment. The performance of the controller is compared with the fixed hybrid PID-PID controller in term of input tracking and vibration suppression. The results indicate that the proposed controller is effective to move the double-link flexible robotic manipulator to the desired position with suppression of the vibration at the end of the double-link flexible robotic manipulator structure
    corecore