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1. Introduction

The wide advancement in different field of life such as domestics and industries make an incredible demand for 

flexible robot controller. Numerous robot controller applications are categorized as multiple-input-multiple-output 

(MIMO) frameworks owing to multi-link structure. The design and tuning of multi-loop controllers to meet certain 

conditions are regularly the pullback factors since there are interaction between the controllers. The framework must be 

decoupled to diminish the interaction or to form the framework diagonally dominant. Additionally, the existence of 

vibration on flexible structure of robot controller must be treated at the same time. The ceaseless stress delivered by the 

vibration can lead to structural deterioration, fatigue, instability and performance degradation. In this way, the decrease 

of vibration on flexible structure of robot controller is of foremost significance. In spite of the fact that numerous analysts 

Abstract: Utilization of robotic manipulator with multi-link structure encompasses a great influence in most of the 
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The study of adaptive controller in flexible manipulator remained until today due to its significant contribution in 

actual plant. Among them, a new Nonlinear Adaptive Modal Predictive Controller on two link flexible manipulator with 

various payload was carried out [1]. The controller could generate appropriate adaptive torque to control tip trajectory 

tracking and fast suppression of tip deflection. Besides, indirect control of Self-Tuning PI controller of two link flexible 

manipulator tune by Neural Network was proposed [2]. Simulation results showed that the tuning parameters obtain could 

suppress the vibration and track the desired joint angles effectively. E. Pereira et al. have investigated the use of adaptive 

input shaping using an algebraic identification for single-link flexible manipulators with various payloads [3]. Experiment 

results proved that the proposed control managed to follow tip trajectories in shorter time. Another research on adaptive 

controller was comprised of a fast on-line closed-loop identification method combined with an output-feedback controller 

for single link flexible manipulators [4]. Experimental results showed that the controller manage to follow the trajectory 

tracking. From the literature, it showed that there is no research using Self Tuned Controller (STC) based on ILA for 

double link flexible manipulator (DLFRM). This STC is very useful because it can be used effectively in handling payload 

variation attach in the system. 

Another type of adaptive controller that is Iterative learning algorithm (ILA) has been implemented in different 

control scheme in the flexible manipulator system. For example, two phase ILA controllers to carry out the ideal input 

and output signals of iterative learning control (ILC) where the error is used to calculate the parameters of the PD 

controller by using standard least squares (LS) algorithm for the single link flexible manipulator (SLFM) [5]. Simulation 

results showed that the proposed controller is effective in tracking the desired trajectory over interval time. Zhang and 

Liu employed an adaptive iterative learning control scheme based on Fourier basis function for SLFM [6]. The simulation 

carried out portrayed that the controller successfully tracks the actual trajectory. Besides, genetic algorithm was applied 

to tune three combinations of controller for single link flexible manipulator in vertical plane motion that is PID, PID-PID 

and PID-ILC controller [7]. Simulation demonstrated that the PID-ILC parameter obtained in the optimization outperform 

other controllers and allow the system to perform well in reducing the vibration at the end-point of the manipulator. 

However, none of the research based on iterative learning algorithm (ILA) was implemented on DLFRM. 

Apart from that, ILA has been utilized completely different control building issues such as robot controller for 

industry and healthcare, machining machine, process plant, power plant, nanotechnology region etc. Among them, Jain 

and Garg have proposed ILC for the nano-positioning framework to dismiss unsettling influences [8]. It has been found 

in simulation outcome that the controller is able to provide exceptionally disturbance rejection and the framework 

overshoot is decreased to worthy level. Besides, a back-stepping versatile iterative learning control joining fuzzy neural 

network was implemented to surmise the unidentified and robust learning term to compensate the uncertainty of robotics 

systems with repetitive errand [9]. Simulation outcomes appeared that the controller allow a good tracking execution for 

both joint position and joint acceleration. Iterative learning control (ILC) is a well-established method for control of 

repetitive processes. Any system offer the repetitive process opts to used ILC as a controller. The iterative learning 

algorithm have the same arrangement whereby it offers a simple structure with repetitive algorithm. Thus, it allows it to 

be easily implemented for online setting which is needed for further research in in DLFRM. 

Mola et al. displayed a modern intelligent robust control strategy based on an active force control (AFC) procedure 

for anti-lock brake system (ABS) [10]. It is outlined and realized in a hybrid shape that's by having the iterative learning 

active force control (ILAFC) with a self-tuning fuzzy logic PID based (FL-PID) for successful in general execution. The 

significant improvement and strong performance appeared by the scheme offer the platform to persevere the research in 

a viable and real-time framework. Another research employed PID dynamic vibration controller utilizing ILA for marine 

riser whereby ILA was utilized to optimize the value of PID parameters based on the error depict within the framework 

[11]. Simulation comes about shown that parameters get by the ILA allow the diminishing of vibration due to vortex 

shedding behind the show riser pipe. A novel strategy to control mobile manipulator was developed where ILA is 

combined with active force control (AFC) and PID structure to compensate the dynamic effect of the unsettling influences 

that incorporates affect constrain and vibratory excitation connected to each wheel and joint of versatile controller [12]. 

Outcome exhibited that the ILC has significantly improved the general execution of the framework in decreasing the 

track error. The assortment of application of ILA appeared in literature review has demonstrated the competency of ILA 

particularly in managing with non-linear system.  

In this paper, P-Type ILA in tuning the hybrid PID controller is formed. The dynamic model of the framework is 

created through system identification utilizing Neural Network. NARX model structure based on multi-layer perceptron 

is utilized to get the non-parametric modeling in comparison to Elman neural network. The control structure of PID 

controllers optimize by P-Type ILA is proposed for desired position and end-point vibration concealment. Performances 

verification of the proposed controllers are executed through simulation in MATLAB/Simulink environment. 

 

have effectively produced the controllers for multi-link adaptable controller, the control scheme developed includes 

complex mathmatics to solve the coupling effect and vibration concurrently. As a result, it consumes a lot of time in 

numerical computation which leads to higher computational price. In this way, the disadvantage grown considerable 

attention in arrange to cater upcoming industries request in different applications. On-going investigation focused on 

improving the control strategies to satisfy all the conflicting prerequisites. 
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2. Modeling and System identification 

 

2.1 Experimental Setup and data collection 

The planar DLFRM is developed and fabricated to apprehend the angular movement of manipulator as shown in 

Fig. 1. The schematic diagram of the framework is displayed in Fig. 2. Table I shows the physical parameters of the 

DLFRM system. 

Table I - Parameter of DLFRM System 

Parameter Link 1 Link 2 

Link Dimension  (LxWxH) 0.5m×0.002m×0.041 0.5m×0.001m ×0.041 

Density (ρ) 2710kg/m3 2710kg/m3 

Modulus of elasticity (E) 7.11x1010 N/m2 7.11x 1010 N/m2 

Link 2nd moment of inertia 2.80 x 10-11 m4 3.50 x 10-12 m2 

Rotor Moment of Inertia 142 gcm2 33.5 gcm2 

 

 

 
Fig. 1 - Double Link Flexible Robotic Manipulator rig 

 

 

 
Fig. 2 - Schematic Diagram of DLFRM 
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The experimental study and impact test were conducted on the developed model as shown in Fig. 3 to identify the 

mode frequencies of the flexible links. The results of the first three modes of vibration from the experimental output and 

impact test of each link were compared for validation purposes. From the experiment, the frequency response for links 1 

and 2 are identified. The platform to collect the data was developed via Simulink as shown in Fig. 3. Each link was 

knocked at 5 different points of the plain surface by a hammer or load. The tool was allowed to swing freely from a 

certain altitude. The dynamic responses were collected by accelerometers. The period of 9 s with sampling time of 0.01 

s was set to captured and recorded the end acceleration 1 and 2. The values obtained were compared and analyzed using 

MATLAB software. 

 

  
(a) Link 1 (b) Link 2 

Fig. 3 - MATLAB/Simulink for data collection of links 

 

The endpoint acceleration of flexible manipulator response of links 1 and 2 are presented in Fig. 4 and 5 respectively.  

The outcomes were presented in time and frequency domain. From Fig. 4, the first three resonance frequencies first link 

of DLFRM system were found to be at 1.516, 3.384 and 21.84 Hz. Meanwhile, 1.56, 3.229, 13.57 Hz were identified 

from Fig. 5 as the first three resonances of the second link of DLFRM system. It was noticed that the mode of vibration 

for links 1 and 2 are similar in range for the first two modes. This could be due to the presence of interaction of links 1 

and 2 in the system. Though there is a connector block in between the links that segregate the first and the second link, 

the system could behave as a single link because the same material is used for both links. Thus, this may lead to the same 

characteristics and show similar behavior. 

 

  
(a) Time domain (b) Frequency domain 

Fig. 4 - Impact test in time and frequency domain for link 1 

 

  
(a) Time domain (b) Frequency domain 

Fig. 5 - Impact test in time and frequency domain for link 2 
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The data collections on the DLFRM system were carried out through the experiment. The DLFRM system was 

inclusive of all the sensors and actuators that were bonded at the link structure.  The verification on the results obtained 

was conducted through the impact test. The results obtained from the impact test was then compared comprehensively 

with the frequency response of the system. Table II and III represent the results from the experimental test in comparison 

with the impact test for links 1 and 2 respectively.  The impact test results are taken as a reference value. It was found 

that a sensible accurateness was acquired from experimental test aimed at the first three modes of vibration. The results 

show an acceptable percentage of error that is below 5 per cent which referred to three modes of vibration.  

 

Table II - Summary of the calculated and experimental frequency for link 1 

Resonance Mode Impact Test 

(Hz) 

Experiment 

(Hz) 

Percentage of Error  

(%) 

1 1.516 1.524 0.53 

2 3.384 3.441 1.68 

3 21.84 20.84 4.58 

 

Table III - Summary of the calculated and experimental frequency for link 2 

Resonance Mode Impact Test 

(Hz) 

Experiment 

(Hz) 

Percentage of Error 

(%) 

1 1.56 1.524 2.31 

2 3.229 3.302 2.26 

3 13.57 13.86 2.14 

 

The comparative study concluded that the experimental work and impact test having a good agreement between 

them. The prominent mode in the system that is first mode shows close agreement whereby the percentage errors are 

0.53% and 2.31% respectively. This imply that the experiment set up to collect the input-output data were appropriate 

for further analysis such as system identification and active control.  

In system identification analysis, a bang-bang signal with ± 0.7 V amplitude and ± 0.5 V were utilized to supply 

essential torque to allow movement in the DLFRM. It is expected that two encoders and two accelerometers would 

capture the hub angles and end-point acceleration value for each link respectively and automatically keep in the database. 

The sampling time 0.01s was set for 9s length to run one complete cycle of experiment. 

2.2 Modeling Estimation 

The DLFRM is categorized under highly non-linear, thus non-parametric modeling is preferred to model it. Among non-

parametric model, Nonlinear auto-regressive with exogenous input (NARX) have the less complicated structure. NARX 

model constitute a standard tool in linear black-box identification that having the nonlinear generalization of the 

prominent Auto-regressive with exogenous input (ARX). The neural network is employed for approximating the 

nonlinear part of the ARX structure. The NNARX model structure regression vector is given by Eq. (1); 

 

 Tkba )nntk),....,u(),u(tn),....,y(ty(t(t) 11      (1) 

 

where (t) is a vector containing the regressors, where  1ty  is delayed versions of the outputs and 𝑢 is delayed inputs 

to the system and na, nb, nk are system order and delay. The regression vector is molded of pass values of the input and 

output of the system. In validating the structure, one step ahead (OSA) prediction of the Neural network nonlinear Auto 

Regressive exogenous (NNARX) model is utilized and it is given by Eq. (2); 

 
     (t),θg,θttyθty  1ˆ                     (2) 

 

where  θtŷ  is the predictions output,  ty  is the true outputs and g is the function formed by the neural network 

scheme. The back propagation for multi-layer perceptron (MLP) neural network and Elman neural networks (ENN) were 

applied in the research. All the four model of the DLFRM system which constitute of four Single Input Single output 

(SISO) were undergone both estimation process using MLP and ENN. 
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The developed model undergoes the verification process to optimize the model obtain. Apart from Mean Squared 

Error (MSE), the following Correlation Test is utilized;  
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where )(tu  and )(t  are input and residual respectively, )( is auto-correlation of residuals, )( u  cross-correlation 

of input and residuals, )(
 2 is cross-correlation of input square and residuals, )(

 22  is cross correlation of input 

square and residuals square, )(
)(


 u
is cross correlation of residuals and (input*residuals) and )(  is an impulse 

function.  The model is developed using nonlinear structure that is NARX. Hence, it is compulsory to fulfill all the five 

conditions. The details of the modeling is elaborated in previous study [13]. 

 

3. Control Scheme 

Fig.6 and 7 shows the separate control scheme for DLFRM. The PIDi1 controller is developed for hub angle motion 

while PIDi2 controller is applied for flexible body motion. The complete PID controllers are tuned by P-Type ILA. Each 

link constitutes of two loops (i=1,2) which both are incorporated to grant control inputs for double link flexible robotic 

manipulator framework. 

 

3.1 Controller Design 

In this research , the intelligent PID controllers are employed to guarantee the hub tracks the reference trajectory and 
the vibration of the system is eradicated simultaneously through end-point acceleration feedback.  

 

 

 

 

 

 

 

 

 

Fig. 6 - Block diagram of control rigid body motion 

 

For the hub angle motion, di , and )(ti represents reference hub angle and actual hub angle of the system 

respectively. By referring to the block diagram in Fig. 6, the close loop signal of Umi can be written as; 

 

       tetCAtU mimimimi 
         

21,i                                                                 (4) 

 

where Umi is PID control input, Ami is motor gain and Cmi is PID controller. The controller gains are KPi, KIi and KDi. And; 

 

𝜃𝑖(𝑡) =  𝐻𝑚𝑖                                                                                             (5) 

 

𝐻𝑚𝑖 =  𝑈𝑚𝑖(𝑡) + 𝐷                                                                  (6) 

 

The error function of the system is defined as in Eq. (7); 
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      tθGtθte imidimi                  21,i                                                                         
(7) 

 

Therefore, the closed loop transfer function obtained as in Eq. (8); 
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For the flexible motion as illustrated in Fig. 7, the control input is given by; 

 

      tetCAtU pipipipi                     21,i                                                                       (9) 

 

 

 

 

 

 

 

 

Fig. 7- Block diagram of control flexible body motion 

 

where Upi is PID control input, Api, are piezoelectric gain, Cpi is PID controller as derived in Eq. 9. The controller gains 

are KPi, KIi and KDi. The deflection output represents by yi and the desired deflection ydi is set to zero. And; 

 

𝑦𝑖(𝑡) =  𝑈𝑝𝑖                                                                 (10) 

 

𝐻𝑝𝑖 =  𝑈𝑝𝑖(𝑡) + 𝐷                 (11) 

 

Thus, the error epi is defined as; 

    tyGte ipipi  0
                         

21,i                                                              
(12) 

Therefore, the closed loop transfer function obtained as; 

 

 
  pipipipi

pipipi

di

i

HGAC

HAC

y

y




1
                                                                                        (13) 

 

The acceptable performance of DLFRM rely on Umi and Upi in which extremely depended on the tuned parameters, KPi, 

KIi and KDi that being fed to the system. The performance of the PID controller of hub angle was determined by transient 

performance such as hub angle settling time, overshoot, rise time and steady state error. Meanwhile, the performance of 

the PID controller of vibration suppression was determined by means of the MSE value. The lower value of those 

parameters indicates the good control outcome.  

 

3.2 P-type ILA 

Iterative learning algorithm is a scheme that employ data in past repetitions to improve the control signal which 

eventually empowering an appropriate control action. ILA gives prevalent performances without intemperate on control-

loop feedback. The research focuses on utilizing the ILA to improve the performance of PID control structure. Hence, 

ILA act like an intelligent mechanism in which the response of a dynamic system improves as time increases based on 
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some error criterion. This is categorized under adaptive controller which solves the problem of fixed controller. Fig. 8 

shows the details of schematic diagram of the ILA tuned by PID controller. 

The scheme put forward the concept of self-tuning of the PID controller parameters by ILA to lessen the whole 

error in the system to facilitate the performance. The equation employed is presented in the following [14]: 
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(14) 

 

where K (k) is the stored value from the previous iteration (from memory), K(k+1) is the updated value (to memory), Φ1 

is the proportional learning parameter, Φ2 is the integral learning parameter, Φ3 is the derivative learning parameter and 

e(k) is the system error. ILA act to compute the parameters’ approximation such that the system output approaches a 

suitable value as the time escalate. However, the over learning might happen amid the learning forms as the time expanded 

ceaselessly. This condition might lead to framework precariousness when it enters a perilous zone [14]. Thus, a stopping 

criterion is actualized into the ILA to overcome this shortcoming.  

 

 
 

Fig. 8 - P-type ILA with PID controller 

 

By that, the learning process will halt promptly when the stopping criterion is met. Subsequently, within the proposed 

controller, the PID controller parameters are upgraded at each trial concurring to the stopping criterion error. This 

stopping criterion is based minimum value of error function. In this study, there are two errors are considered that is to 

minimize the error from the hub angles and error from the end-point acceleration. The stopping criterion error for hub is 

set at 0.02 rad. And for end point acceleration, the stopping criterion error is set to 0.0015 m/s2. For hub angle, the smaller 

value indicates precision in positioning the link to desire position. In the interim, the smaller value of end-point 

acceleration infers that the vibration within the framework is exceptionally much decreased. The error can be calculated 

by using Eq. (15) 

 

                     
     kykyke d 

 
(15) 

 

where e(k), yd(k) and y(k) is the system error, desired input and actual output respectively.  

New signals KP (k+1), KI (k+1) and KD (k+1) are calculated based on the stopping criterion error. The new stored 

signals were employed in the next iteration. The new signals KP (k+1), KI (k+1) and KD (k+1) are calculated based on Eq. 

(11) if the error is exceeding the set stopping criterion error. However, in the event that the error is lesser than the stopping 

criterion error, then the new signals KP (k+1), KI (k+1) and KD (k+1) are calculated utilizing the following equations: 
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(16) 

 

At this point, the iteration would halt to dodge over learning. Those values are considered the best parameters numeral for 
PID controller.  
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4. Results and discussion 

4.1 NNARX Modeling 

Table IV summarizes the best model and overall comparative performance for the hub angle and end-point 

acceleration. The result of modeling for hub angle 1 and hub angle 2 using MLP and ENN prediction structure are 

compared. It is observed that MLP is competent to follow the actual data closely. The error between actual and predicted 

MLP output almost negligible or close to zero. Meanwhile, the ENN prediction of hub angle 1 and 2 for the same data 

show that ENN is able to trace the actual data. However, there is critical disparity between the actual data and prediction 

data.  The deviation is indeed more discernible on the validated data section. The error is significant and cannot be neglect. 

The models obtained via MLP undergo correlation test fall within 95% confidence for both links. 

Table IV- Summary of the best performance achieved in modeling 

 Model Spec. T (s) MSE Corr. test 

MLP 

Hub1 MS: [ 2 2 1], Ite: 150 3 0.0000685 unbiased 

Hub2 MS: [ 2 2 1], Ite: 150 3 0.000752 unbiased 

End-point Acceleration 1 MS: [ 2 2 1], Ite: 150 3 0.0025 unbiased 

End-point Acceleration 2 MS: [ 2 2 1], Ite: 150 3 0.0049 unbiased 

ENN 

Hub1 MS: [ 8 8 1], Ite: 150 2 0.0047 biased 

Hub2 MS: [ 8 8 1], Ite: 150 2 0.0023 biased 

End-point Acceleration 1 MS: [ 8 8 1], Ite: 150 3 0.018 biased 

End-point Acceleration 2 MS: [ 8 8 1], Ite: 150 3 0.015 biased 

 

Conversely, the models obtained via ENN undergo the correlation test are clearly drop far-off 95% confidence level 

for both links. The same outcomes of correlation test were found in modeling of end-point acceleration for both link 1 and 

link 2 using MLP and ENN respectively. This appear that MLP is predominant in predicting the model as compared to 

ENN. The error between actual and predicted MLP output is negligible. The correlation test for end-point acceleration of 

both link 1 and link 2 also shows that the results of MLP model fall within 95% confidence level. Meanwhile, the 

correlations of the error for both models using ENN are clearly drop far-off 95% confidence level. Hence, it can conclude 

that both models predicted by ENN are biased.  

The details of correlations test with the graph can be obtained from previous research [13]. The DLFRM model 

attained by means of MLP will be exploited in developing of control for hub-angle and end-point acceleration of the 

DLFRM.  

 

4.2 Control Results 

 

Simulation was carried out in order to study the effectiveness of the PID-ILA controller in trajectory tracking and 

vibration concealment control of DLFRM with no payloads. The simulation was realized and confirmed within 

MATLAB/Simulink environment. The Simulink models were constructed on block diagram shown in Fig. 9 and 10. Step 

signals were supplied as input reference with maximum magnitude of ± 2.1 rad and ± 1.1 rad for links 1 and 2 respectively. 

The learning parameters were tuned through trial and error technique. The simulations were run employing the sampling 

rate of 0.01 s within 9 s. The controller keeps the value of parameter gains throughout the simulation process. These 

values are utilized as references within the next parameter gains’ computation which is recognized by error discrepancy.  
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Fig. 9 - Block diagram of self-tuning control scheme based on ILA for hub angles 1 and 2 

 

 

 
Fig. 10 - Block diagram of self-tuning control scheme based on ILA for end-point accelerations 1 and 2 

 

4.2.1 Hub angle Motion 

Amid the simulation, the learning process was executed to discover a new controller parameter based on the learning 

parameters. The learning parameters exhibited in Eq. (14) were tuned through trial and error method. The learning 

parameters were set to Φ1 = 3, Φ2 = 1 and Φ3 = 10. The controller keeps the value of parameter gains and utilizes these 

values as references for the next cycle.  The next parameter gains are identified by error discrepancy. The control 

parameters of KP, KI, and KD converge when it obtained the constant values as appeared in Fig. 11.  

 

  
Fig. 11- (a) Parameters convergence of hub angle 1 using PID-ILA controller; (b) Parameters convergence of 

hub angle 2 using PID-ILA controller 

 

At this point the minimum output error is reached. The parameters KP, KI, and KD of both links become settle at about 

2.81 s and 2.65 s respectively.  

The intelligent PID-ILA controller was compared with the fixed controller, PID-PSO. PID-ZN worked as the control 

benchmark. The simulation step response for closed-loop hub angle 1 and 2 of PID-ILA controller at stopping criterion 

error of 0.02 rad are shown in Fig. 12 and 13 with initial values of Kp =2.083, KI = 0.539 and KD= 2.010 and Kp =4.148, 

KI = 1.296 and KD= 3.318 for links 1 and 2 respectively.  These values were found through Ziegler-Nichols method 
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conducted in previous research [15]. The stopping criterion value was attained through trial method. The parameter will 

converge exceptionally quick up to the extent that the link yet to reach desired angle. In any case, in the event that the 

esteem is too small the parameter will never converge. The impact of integrating the iterative learning to the framework 

can be examined as the error between the actual and desired angle converges to a minimum value as time rises. The 

iterative term within the controller will iterate until it reaches the least output error. In case the least yield error is reached, 

the parameter gains for the controller will become steady over time. The performance of self-tuning PID-ILA control 

structure is observed in terms of rise time, tr (s), settling time, ts (s), maximum overshoot, Mp (%) and steady state error, 

Ess (rad).  

 

  
Fig. 12 - Comparison between PID-ZN, PID-PSO and 

PID-ILA of hub angle 1 

Fig. 13 - Comparison between PID-ZN, PID-PSO and 

PID-ILA of hub angle 2 

 

The numerical results are tabulated in Table V. It can be observed from the outcomes that PID-ILA control structure 

improves the tr, ts and Mp compared to fixed PID control structure. Also, the results exhibited that PID-ILA control 

structure for link 1 and 2 were able to follow the specified hub-angle of DLFRM. There is noteworthy enhancement 

detected on PID-ILA. PID-ZN simply provides the starting point for further tuning. Hence, the result may not accomplish 

the ideal behavior. The rate of enchantment attained by PID-ILA controller compared with PID-PSO controller for tr, ts 

and Mp are 86.2 %, 44.94 % and 86.21% for link 1 and 80.95 %, 16.95 % and 17.91 % for link 2. 

Table V - Performance of controllers for hub angle 

Controller Parameters of controllers Rise 

Time (s), 

tr 

Settling 

Time (s), ts 

Over 

shoot (%), 

Mp 

SSE,Ess 

 Φ1 Φ2 Φ3 KP KI KD 

HUB 1 

P-Type ILA 3 1 10 13.8 8.30 40.9 0.008 0.49 0.16 0 

PID-PSO - - - 3.7 57.8 3.4 0.058 0.89 1.16 0.003 

PID-ZN - - - 2.1 0.54 2.0 2.965 7.147 4.69 0.68 

HUB 2 

P-Type ILA 3 1 10 21.3 7.01 60.5 0.008 0.49 1.10 0 

PID-PSO - - - 2.19 88.2 0.79 0.042 0.59 1.34 0.002 

PID-ZN - - - 4.15 1.29 3.32 1.460 5.45 5.45 0.21 

 

4.2.2 Flexible Motion 

The same simulation process applied to the end-point acceleration control. The learning parameters were attained 

by means of trial method that is Φ1=3, Φ2=1 and Φ3=5 for both links. The learning process to discover the new controller 

parameters is executed based on the learning parameters. Fig. 14 displays the convergence value of the control parameters 

of KP, KI, and KD when it come to the steady values. The initial value of Kp =7.2, KI = 21.176 and KD= 1.812 and Kp= 

4.16, KI = 55.082 and KD= 3.052 for links 1 and 2 respectively.  These values were obtained from Ziegler-Nichols strategy 

[15]. The value ended up consistent once the least yield error come to the set stopping criterion error that is 0.0015 m/s2. 

This value also attained via trial method. In case the value is too high, the parameter will merge exceptionally quick to 

the degree that the vibration concealment exceptionally insignificant. However, if the value too small the parameter will 
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never converge. The estimated time for the controller parameters KP, KI, and KD of both links to settle at those constant 

values are about 7.34 s and 8.27 s respectively. 

 

  
Fig. 14 - (a) Parameters convergence of end-point acceleration 1 using PID-ILA controller; (b) Parameters 

convergence of end-point acceleration 2 using PID-ILA controller. 

 

The fixed controller, PID-PSO was used as the standard of assessment for the intelligent PID-ILA controller. The 

outcome appears to be that PID tuning through ILA managed to improve the performance of vibration suppression than 

those obtained by the PSO strategy. Fig. 15 and 16 show the results for both links respectively. 

 

  
Fig.15 - Comparison between controllers for end-

point acceleration 1 

Fig. 16 - Comparison between controllers for end-

point acceleration 2 

 

Numerical results tabulated in Table VI displays that the MSE value of the PID-ILA control are recorded t the most 

reduce value in comparison to other controllers. The rate of improvement accomplished by PID-ILA controller compared 

to PID-PSO controller for MSE is 54.15 % and 6.05 % for link 1 and 2 respectively. 

Table VI - Performance of controllers for end-point acceleration 

Controller 
Parameters of controllers MSE Parameters of controllers MSE 

Φ1 Φ2 Φ3 KP KI KD Φ1 Φ2 Φ3 KP KI KD 

Link 1 Link 2 

PID-ILA 3 1 5 7.38 21.24 1.812 1.810 × 10 -8 3 1 5 16.11 55.12 3.052 4.054 × 10 -8 

PID-PSO - - - 2.07 498.1 2.33 3.948 ×10 -8 - - - 8.06 817.9 1.033 4.315 × 10 -8 

PID-ZN - - - 7.2 21.18 0.612 2.822 ×10 -6 - - - 16 55.08 1.281 7.564 ×10 -7 

 

This could be further examined from frequency domain result as appeared in Fig.17 (a) and (b). The employment 

of PID-ILA control brings to higher attenuation value for link 1 that is 56.8 dB as compared to PID-PSO that is 44.3 dB. 

The attenuation value of PID-ILA for link 2 shows the same pattern is that is 38.1 dB as compared to PID-PSO that is 

35.8 dB. The comparison focused on mode 1 since the first mode is mode is prevailing and contributes considerable 

impact to the framework.  
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(a) Link 1 (b) Link 2 

Fig. 17- Spectral density of the system output not label axes with a ratio of quantities and units. 

 

5. Conclusions 

In this work, the self-tuned control strategy was proposed for DLFRM based on the estimated dynamic model. The 

proposed P-Type ILA to tune the PID controller in tracking the desired hub-angle and suppress the vibration of DLFRM 

was investigated and compared with corresponding fixed control structure that is conventional PID and PID-PSO. The 

research shows that the the model structure, NARX utilizing MLP as estimator is able to supply great and solid system 

identification of DLFRM system. The claimed is proven through the lower MSE results and unbiased correlation test. It 

is noted that PID-ILA control structure performed well as compared to those fixed PID control structure specifically PID-

PSO manages to give a good response. For the hub angle, the percentage of improvement achieve by P-Type ILA 

controller compared with PID-PSO controller for tr, ts and Mp are 86.2 %, 44.94 % and 86.21% for link 1 and 80.95 %, 

16.95 % and 17.91 % for link 2. Meanwhile, the percentage of improvement for flexible body control achieve by PID-

ILA controller compared to PID-PSO controller in term of MSE are 54.15 % and 6.05 % for link 1 and 2 respectively. It 

can be concluded from this observation that the performance of the proposed adaptive PID-ILA control scheme is better 

than the fixed PID controller.  
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