25 research outputs found
Genomic landscape of lung adenocarcinoma in East Asians
Lung cancer is the world’s leading cause of cancer death and shows strong ancestry disparities. By sequencing and assembling a large genomic and transcriptomic dataset of lung adenocarcinoma (LUAD) in individuals of East Asian ancestry (EAS; n = 305), we found that East Asian LUADs had more stable genomes characterized by fewer mutations and fewer copy number alterations than LUADs from individuals of European ancestry. This difference is much stronger in smokers as compared to nonsmokers. Transcriptomic clustering identified a new EAS-specific LUAD subgroup with a less complex genomic profile and upregulated immune-related genes, allowing the possibility of immunotherapy-based approaches. Integrative analysis across clinical and molecular features showed the importance of molecular phenotypes in patient prognostic stratification. EAS LUADs had better prediction accuracy than those of European ancestry, potentially due to their less complex genomic architecture. This study elucidated a comprehensive genomic landscape of EAS LUADs and highlighted important ancestry differences between the two cohorts
Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha
We employed systematic mixture analysis to determine optimal levels of acetate, propionate, and butyrate for cell growth and polyhydroxyalkanoate (PHA) production by Ralstonia eutropha H16. Butyrate was the preferred acid for robust cell growth and high PHA production. The 3-hydroxyvalerate content in the resulting PHA depended on the proportion of propionate initially present in the growth medium. The proportion of acetate dramatically affected the final pH of the growth medium. A model was constructed using our data that predicts the effects of these acids, individually and in combination, on cell dry weight (CDW), PHA content (%CDW), PHA production, 3HV in the polymer, and final culture pH. Cell growth and PHA production improved approximately 1.5-fold over initial conditions when the proportion of butyrate was increased. Optimization of the phosphate buffer content in medium containing higher amounts of butyrate improved cell growth and PHA production more than 4-fold. The validated organic acid mixture analysis model can be used to optimize R. eutropha culture conditions, in order to meet targets for PHA production and/or polymer HV content. By modifying the growth medium made from treated industrial waste, such as palm oil mill effluent, more PHA can be produced.Malaysia. Ministry of Science, Technology and Innovation (MOSTI
Kinetic characterization of a low-dissolved‑oxygen oxic-anoxic process treating low COD/N tropical wastewater revealed selection of nitrifiers with high substrate affinity
The design of wastewater treatment plants in the tropics is largely based on default parameters from the studies in temperate climates. This may lead to suboptimal design, such as the intensive aeration required for biological nitrogen removal. To reduce the aeration energy, a low-dissolved-oxygen oxic-anoxic (low-DO OA) process was developed for treating low chemical oxygen demand-to-nitrogen (COD/N) tropical wastewater. This study calibrated the growth kinetic parameters of microbes in a conventional anoxic-oxic (AO) and a low-DO OA sequencing batch reactors (SBRs) based on a modified version of Activated Sludge Model No. 1 (ASM1). We selected three parameters to be calibrated, namely the maximum growth rate of heterotrophs (mu(H)), maximum growth rate of nitrifiers (mu(A)) and nitrifiers' affinity towards ammoniacal nitrogen (NH4+ -N) (KNH). The low-DO OA SBR selected for microbes with a low mu(H) (2.2 d(-1)), mu A (1.49 d-1) and KNH (0.035 mg NH4+ -N L-1), which supported the observed proliferation of K-strategist Nitrospira at low-DO condition (0.4 +/- 0.2 mg O-2 L-1). The calibrated parameters for the AO SBR (1.7 +/- 0.2 mg O-2 L-1) were significantly higher (mu H=9.3 d(-1), mu A=4.49 d(-1), KNH=6.3 mg NH4+ -N L-1) than the low-DO OA SBR. The calibrated ASM1 adequately simulated the low-DO OA SBR performance under different sludge retention times. The findings demonstrated a kinetic insight into the unique K-strategist nitrifiers in a low-DO OA process. Moreover, this study reinforced the importance of using parameters for tropical wastewater rather than relying on default values from studies in temperate climates
Application of pcswmm for the 1‐d and 1‐d–2‐d modeling of urban flooding in damansara catchment, malaysia
Coupled with climate change, the urbanization-driven increase in the frequency and intensity of floods can be seen in both developing and developed countries, and Malaysia is no exemption. As part of flood hazard mitigation, this study aimed to simulate the urban flood scenarios in Malaysia’s urbanized catchments. The flood simulation was performed using the Personal Computer Storm Water Management Model (PCSWMM) modeling of the Damansara catchment as a case study. An integrated hydrologic-hydraulic model was developed for the 1-D river flow modeling and 1-D–2-D drainage overflow modeling. The reliability of the 1-D river flow model was confirmed through the calibration and validation, in which the water level in TTDI Jaya was satisfactorily predicted, supported by the coefficient of determination (R2), Nash–Sutcliffe model efficiency coefficient (NSE), and relative error (RE). The performance of the 1-D–2-D model was further demonstrated based on the flood depth, extent, and risk caused by the drainage overflow. Two scenarios were tested, and the comparison results showed that the current drainage effectively reduced the drainage overflow due to the increased size of drains compared to the historic drainage in 2015. The procedure and findings of this study could serve as references for the application in flood mitigation planning worldwide, especially for developing countries.</jats:p