32 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Molecular characterisation of a candidate gut sucrase in the pea aphid, Acyrthosiphon pisum

    No full text
    The hydrolysis of sucrose, the principal dietary source of carbon for aphids, is catalysed by a gut α-glucosidase/transglucosidase activity. An α-glucosidase, referred to as APS1, was identified in both a gut-specific cDNA library and a sucrase-enriched membrane preparation from guts of the pea aphid Acyrthosiphon pisum by a combination of genomic and proteomic techniques. APS1 contains a predicted signal peptide, and has a predicted molecular mass of 68 kDa (unprocessed) or 66.4 kDa (mature protein). It has amino acid sequence similarity to α-glucosidases (EC 3.2.1.20) of glycoside hydrolase family 13 in other insects. The predicted APS1 protein contains two domains: an N-terminal catalytic domain, and a C-terminal hydrophobic domain. In situ localisation and RT-PCR studies revealed that APS1 mRNA was expressed in the gut distal to the stomach, the same localisation as sucrase activity. When expressed heterologously in Xenopus embryos, APS1 was membrane-bound and had sucrase activity. It is concluded that APS1 is a dominant, and possibly sole, protein mediating sucrase activity in the aphid gut
    corecore