4 research outputs found
Optimization of a Low Cost and Broadly Sensitive Genotyping Assay for HIV-1 Drug Resistance Surveillance and Monitoring in Resource-Limited Settings
Commercially available HIV-1 drug resistance (HIVDR) genotyping assays are expensive and have limitations in detecting non-B subtypes and circulating recombinant forms that are co-circulating in resource-limited settings (RLS). This study aimed to optimize a low cost and broadly sensitive in-house assay in detecting HIVDR mutations in the protease (PR) and reverse transcriptase (RT) regions of pol gene. The overall plasma genotyping sensitivity was 95.8% (N = 96). Compared to the original in-house assay and two commercially available genotyping systems, TRUGENE® and ViroSeq®, the optimized in-house assay showed a nucleotide sequence concordance of 99.3%, 99.6% and 99.1%, respectively. The optimized in-house assay was more sensitive in detecting mixture bases than the original in-house (N = 87, P<0.001) and TRUGENE® and ViroSeq® assays. When the optimized in-house assay was applied to genotype samples collected for HIVDR surveys (N = 230), all 72 (100%) plasma and 69 (95.8%) of the matched dried blood spots (DBS) in the Vietnam transmitted HIVDR survey were genotyped and nucleotide sequence concordance was 98.8%; Testing of treatment-experienced patient plasmas with viral load (VL) ≥ and <3 log10 copies/ml from the Nigeria and Malawi surveys yielded 100% (N = 46) and 78.6% (N = 14) genotyping rates, respectively. Furthermore, all 18 matched DBS stored at room temperature from the Nigeria survey were genotyped. Phylogenetic analysis of the 236 sequences revealed that 43.6% were CRF01_AE, 25.9% subtype C, 13.1% CRF02_AG, 5.1% subtype G, 4.2% subtype B, 2.5% subtype A, 2.1% each subtype F and unclassifiable, 0.4% each CRF06_CPX, CRF07_BC and CRF09_CPX
Antiviral Resistance and Correlates of Virologic Failure in the first Cohort of HIV-Infected Children Gaining Access to Structured Antiretroviral Therapy in Lima, Peru: A Cross-Sectional Analysis
<p>Abstract</p> <p>Background</p> <p>The impact of extended use of ART in developing countries has been enormous. A thorough understanding of all factors contributing to the success of antiretroviral therapy is required. The current study aims to investigate the value of cross-sectional drug resistance monitoring using DNA and RNA oligonucleotide ligation assays (OLA) in treatment cohorts in low-resource settings. The study was conducted in the first cohort of children gaining access to structured ART in Peru.</p> <p>Methods</p> <p>Between 2002–5, 46 eligible children started the standard regimen of AZT, 3TC and NFV Patients had a median age of 5.6 years (range: 0.7-14y), a median viral load of 1.7·10<sup>5</sup> RNA/ml (range: 2.1·10<sup>3</sup> – 1.2·10<sup>6</sup>), and a median CD4-count of 232 cells/μL (range: 1–1591). Of these, 20 patients were classified as CDC clinical category C and 31/46 as CDC immune category 3. At the time of cross-sectional analysis in 2005, adherence questionnaires were administered. DNA OLAs and RNA OLAs were performed from frozen PBMC and plasma, RNA genotyping from dried blood spots.</p> <p>Results</p> <p>During the first year of ART, 44% of children experienced virologic failure, with an additional 9% failing by the end of the second year. Virologic failure was significantly associated with the number of resistance mutations detected by DNA-OLA (p < 0.001) during cross-sectional analysis, but also with low immunologic CDC-scores at baseline (p < 0.001). Children who had been exposed to unsupervised short-term antiretrovirals before starting structured ART showed significantly higher numbers of resistance mutations by DNA-OLA (p = 0.01). Detection of M184V (3TC resistance) by RNA-OLA and DNA-OLA demonstrated a sensitivity of 0.93 and 0.86 and specificity of 0.67 and 0.7, respectively, for the identification of virologic failure. The RT mutations N88D and L90M (NFV resistance) detected by DNA-OLA correlated with virologic failure, whereas mutations at RT position 215 (AZT resistance) were not associated with virologic failure.</p> <p>Conclusions</p> <p>Advanced immunosuppression at baseline and previous exposures to unsupervised brief cycles of ART significantly impaired treatment outcomes at a time when structured ART was finally introduced in his cohort. Brief maternal exposures to with AZT +/− NVP for the prevention of mother-to-child transmission did not affect treatment outcomes in this group of children. DNA-OLA from frozen PBMC provided a highly specific tool to detect archived drug resistance. RNA consensus genotyping from dried blood spots and RNA-OLA from plasma consistently detected drug resistance mutations, but merely in association with virologic failure.</p