13 research outputs found

    Structure and function of the Ts2631 endolysin of <i>Thermus scotoductus</i> phage vB_Tsc2631 with unique N-terminal extension used for peptidoglycan binding

    Get PDF
    Abstract To escape from hosts after completing their life cycle, bacteriophages often use endolysins, which degrade bacterial peptidoglycan. While mesophilic phages have been extensively studied, their thermophilic counterparts are not well characterized. Here, we present a detailed analysis of the structure and function of Ts2631 endolysin from thermophilic phage vB_Tsc2631, which is a zinc-dependent amidase. The active site of Ts2631 consists of His30, Tyr58, His131 and Cys139, which are involved in Zn2+ coordination and catalysis. We found that the active site residues are necessary for lysis yet not crucial for peptidoglycan binding. To elucidate residues involved in the enzyme interaction with peptidoglycan, we tested single-residue substitution variants and identified Tyr60 and Lys70 as essential residues. Moreover, substitution of Cys80, abrogating disulfide bridge formation, inactivates Ts2631, as do substitutions of His31, Thr32 and Asn85 residues. The endolysin contains a positively charged N-terminal extension of 20 residues that can protrude from the remainder of the enzyme and is crucial for peptidoglycan binding. We show that the deletion of 20 residues from the N-terminus abolished the bacteriolytic activity of the enzyme. Because Ts2631 exhibits intrinsic antibacterial activity and unusual thermal stability, it is perfectly suited as a scaffold for the development of antimicrobial agents

    The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function

    Get PDF
    BACKGROUND: The WD motif (also known as the Trp-Asp or WD40 motif) is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs) are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events. RESULTS: We analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes. CONCLUSIONS: Our results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions

    The Ectodysplasin receptor EDAR acts as a tumor suppressor in melanoma by conditionally inducing cell death

    No full text
    International audienceEctodysplasin receptor EDAR is seen as a typical Tumor Necrosis Factor receptor (TNFR) family member known to interact with its ligand Eda-A1, and signaling mainly through the nuclear factor-kappaB (NF-κB) and c-jun N-terminal kinases pathways. Mutations in genes that encode proteins involved in EDAR transduction cascade cause anhidrotic ectodermal dysplasia. Here, we report an unexpected pro-apoptotic activity of EDAR when unbound to its ligand Eda-A1, which is independent of NF-κB pathway. Contrarily to other death receptors, EDAR does recruit caspase-8 to trigger apoptosis but solely upon ligand withdrawal, thereby behaving as the so-called dependence receptors. We propose that pro-apoptotic activity of unbound EDAR confers it a tumor suppressive activity. Along this line, we identified loss-of-pro-apoptotic function mutations in EDAR gene in human melanoma. Moreover, we show that the invalidation of EDAR in mice promotes melanoma progression in a B-Raf mutant background. Together, these data support the view that EDAR constrains melanoma progression by acting as a dependence receptor
    corecore