18 research outputs found

    Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.)

    No full text
    The original publication is available at www.springerlink.comIn this study, we investigated crop yield and various chemical and microbiological properties in rhizosphere of wheat, maize, and faba bean grown in the field solely and intercropped (wheat/faba bean, wheat/maize, and maize/faba bean) in the second and third year after establishment of the cropping systems. In both years, intercropping increased crop yield, changed N and P availability, and affected the microbiological properties in rhizosphere of the three species compared to sole cropping. Generally, intercropping increased microbial biomass C, N, and P availability, whereas it reduced microbial biomass N in rhizosphere of wheat. The rhizosphere bacterial community composition was studied by denaturing gradient gel electrophoresis of 16S rRNA. In the third year of different cropping systems, intercropping significantly changed bacterial community composition in rhizosphere compared with sole cropping, and the effects were most pronounced in the wheat/faba bean intercropping system. The effects were less pronounced in the second year. The results show that intercropping has significant effects on microbiological and chemical properties in the rhizosphere, which may contribute to the yield enhancement by intercropping.Y. N. Song, F. S. Zhang, P. Marschner, F. L. Fan, H. M. Gao, X. G. Bao, J. H. Sun and L. L

    Vegetation Affects the Relative Abundances of Dominant Soil Bacterial Taxa and Soil Respiration Rates in an Upland Grassland Soil

    No full text
    Plant-derived organic matter inputs are thought to be a key driver of soil bacterial community composition and associated soil processes. We sought to investigate the role of acid grassland vegetation on soil bacterial community structure by assessing bacterial diversity in combination with other soil variables in temporally and spatially distinct samples taken from a field-based plant removal experiment. Removal of aboveground vegetation resulted in reproducible differences in soil properties, soil respiration and bacterial diversity. Vegetated soils had significantly increased carbon and nitrogen concentrations and exhibited higher rates of respiration. Molecular analyses revealed that the soils were broadly dominated by Alphaproteobacterial and Acidobacterial lineages, with increased abundances of Alphaproteobacteria in vegetated soils and more Acidobacteria in bare soils. This field-based study contributes to a growing body of evidence documenting the effect of soil nutrient status on the relative abundances of dominant soil bacterial taxa, with Proteobacterial taxa dominating over Acidobacteria in soils exhibiting higher rates of C turnover. Furthermore, we highlight the role of aboveground vegetation in mediating this effect by demonstrating that plant removal can alter the relative abundances of dominant soil taxa with concomitant changes in soil CO2-C efflux
    corecore