27 research outputs found

    Novel catalytically active pd/Ru bimetallic nanoparticles synthesized by Bacillus benzeovorans

    Get PDF
    This work was supported by a UK Commonwealth scholarship to JBO. BK was supported by the Petroleum Technology Development Funds (PTDF) of Nigeria. The project was funded by NERC grant NE/L014076/1 to LEM. The Science City Photoemission Facility used in this research was funded through the Science Cities Advanced Materials Project 1: Creating and Characterizing Next Generation of Advanced Materials with support from AWM and ERDF funds. The microscopy work was conducted in the “Laboratorio de Microscopias Avanzadas” at “Instituto de Nanociencia de Aragon - Universidad de Zaragoza” Spain. The authors acknowledge the LMA-INA for offering access to their instruments and expertise.Bacillus benzeovorans assisted and supported growth of ruthenium (bio-Ru) and palladium/ruthenium (bio-Pd@Ru) core@shell nanoparticles (NPs) as bio-derived catalysts. Characterization of the bio-NPs using various electron microscopy techniques and high-angle annular dark field (HAADF) analysis confirmed two NP populations (1–2 nm and 5–8 nm), with core@shells in the latter. The Pd/Ru NP lattice fringes, 0.231 nm, corresponded to the (110) plane of RuO2. While surface characterization using X-ray photoelectron spectroscopy (XPS) showed the presence of Pd(0), Pd(II), Ru(III) and Ru(VI), X-ray absorption (XAS) studies of the bulk material confirmed the Pd speciation (Pd(0) and Pd(II)- corresponding to PdO), and identified Ru as Ru(III) and Ru(IV). The absence of Ru–Ru or Ru–Pd peaks indicated Ru only exists in oxide forms (RuO2 and RuOH), which are surface-localized. X ray diffraction (XRD) patterns did not identify Pd-Ru alloying. Preliminary catalytic studies explored the conversion of 5-hydroxymethyl furfural (5-HMF) to the fuel precursor 2,5-dimethyl furan (2,5-DMF). Both high-loading (9.7 wt.% Pd, 6 wt.% Ru) and low-loading (2.4 wt.% Pd, 2 wt.% Ru) bio-derived catalysts demonstrated high conversion efficiencies (~95%) and selectivity of ~63% (~20% better than bio-Ru NPs) and 58%, respectively. These materials show promising future scope as efficient low-cost biofuel catalysts.Funded by NERC grant NE/L014076/

    Gaseous emissions from agricultural activities and wetlands in national capital territory of Delhi

    Get PDF
    Abstract This work aims to develop an emission inventory of methane (CH4), nitrous oxide (N2O), ammonia (NH3), nitrogen oxides (NO, NO2) and CO2 from various agricultural activities and wetlands in Delhi area using an emission factor and activity based approach between the years 2001 and 2011. Among all agricultural activities, livestock enteric fermentation (LEF) was found to be the main source, contributing up to 90% of total CH4. This is followed by livestock manure management (LMM) (6–7%), paddy field (3–5%) and burning of crop residue (0.6–0.9%). It was also found that LMM practices alone contributed ∼99.8% of total N2O emissions and ∼106–141 Gg of NH3 during 2001–2011. Crop residue burning was responsible for ∼41 Gg of annual average emissions of NOx over the period 2001–2011. Annual CH4 emissions from rice cultivation practices were found to be in the 560–634 Gg range during same period. N2O emission from crop residue burning and fertilizer were insignificant when compared with LMM practices. About 54 Gg, 1.5 Gg and 14 Mg of CO2, CH4 and N2O, respectively, were released by natural and manmade wetlands in Delhi during 2009 while manmade wetlands were found to be responsible for 48–49% of total GHG (CO2,CH4,N2O) emissions

    Gaseous emissions from agricultural activities and wetlands in national capital territory of Delhi

    No full text
    Abstract This work aims to develop an emission inventory of methane (CH4), nitrous oxide (N2O), ammonia (NH3), nitrogen oxides (NO, NO2) and CO2 from various agricultural activities and wetlands in Delhi area using an emission factor and activity based approach between the years 2001 and 2011. Among all agricultural activities, livestock enteric fermentation (LEF) was found to be the main source, contributing up to 90% of total CH4. This is followed by livestock manure management (LMM) (6–7%), paddy field (3–5%) and burning of crop residue (0.6–0.9%). It was also found that LMM practices alone contributed ∼99.8% of total N2O emissions and ∼106–141 Gg of NH3 during 2001–2011. Crop residue burning was responsible for ∼41 Gg of annual average emissions of NOx over the period 2001–2011. Annual CH4 emissions from rice cultivation practices were found to be in the 560–634 Gg range during same period. N2O emission from crop residue burning and fertilizer were insignificant when compared with LMM practices. About 54 Gg, 1.5 Gg and 14 Mg of CO2, CH4 and N2O, respectively, were released by natural and manmade wetlands in Delhi during 2009 while manmade wetlands were found to be responsible for 48–49% of total GHG (CO2,CH4,N2O) emissions

    Preliminary Estimates of Nanoparticle Number Emissions from Road Vehicles in Megacity Delhi and Associated Health Impacts

    No full text
    Rapid urbanisation in developing megacities like Delhi has resulted in an increased number of road vehicles and hence total particle number (ToN) emissions. For the first time, this study presents preliminary estimates of ToN emissions from road vehicles, roadside and ambient ToN concentrations, and exposure related excess deaths in Delhi in current and two future scenarios; business as usual (BAU) and best estimate scenario (BES). Annual ToN emissions are estimated as 1.37 × 1025 for 2010 which are expected to increase by ∼4 times in 2030-BAU, but to decrease by ∼18 times in 2030-BES. Such reduction is anticipated due to a larger number of compressed natural gas driven vehicles and assumed retrofitting of diesel particulate filters to all diesel vehicles by 2020. Heavy duty vehicles emit the majority (∼65%) of ToN for only ∼4% of total vehicle kilometres traveled in 2010. Their contribution remains dominant under both scenarios in 2030, clearly requiring major mitigation efforts. Roadside and ambient ToN concentrations were up to a factor of 30 and 3 higher to those found in respective European environments. Exposure to ambient ToN concentrations resulted in ∼508, 1888, and 31 deaths per million people in 2010, 2030-BAU and 2030-BES, respectively
    corecore