33 research outputs found

    Effects of Transcriptional Pausing on Gene Expression Dynamics

    Get PDF
    Stochasticity in gene expression affects many cellular processes and is a source of phenotypic diversity between genetically identical individuals. Events in elongation, particularly RNA polymerase pausing, are a source of this noise. Since the rate and duration of pausing are sequence-dependent, this regulatory mechanism of transcriptional dynamics is evolvable. The dependency of pause propensity on regulatory molecules makes pausing a response mechanism to external stress. Using a delayed stochastic model of bacterial transcription at the single nucleotide level that includes the promoter open complex formation, pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination, we investigate how RNA polymerase pausing affects a gene's transcriptional dynamics and gene networks. We show that pauses' duration and rate of occurrence affect the bursting in RNA production, transcriptional and translational noise, and the transient to reach mean RNA and protein levels. In a genetic repressilator, increasing the pausing rate and the duration of pausing events increases the period length but does not affect the robustness of the periodicity. We conclude that RNA polymerase pausing might be an important evolvable feature of genetic networks

    Clinical pharmacy activities in chronic kidney disease and end-stage renal disease patients: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic kidney disease (CKD) and end-stage renal disease (ESRD) represent worldwide health problems with an epidemic extent. Therefore, attention must be given to the optimisation of patient care, as gaps in the care of CKD and ESRD patients are well documented. As part of a multidisciplinary patient care strategy, clinical pharmacy services have led to improvements in patient care. The purpose of this study was to summarise the available evidence regarding the role and impact of clinical pharmacy services for these patient populations.</p> <p>Methods</p> <p>A literature search was conducted using the <it>Medline</it>, <it>Embase </it>and <it>International Pharmaceutical Abstracts </it>databases to identify relevant studies on the impact of clinical pharmacists on CKD and ESRD patients, regarding disease-oriented and patient-oriented outcomes, and clinical pharmacist interventions on drug-related problems.</p> <p>Results</p> <p>Among a total of 21 studies, only four (19%) were controlled trials. The majority of studies were descriptive (67%) and before-after studies (14%). Interventions comprised general clinical pharmacy services with a focus on detecting, resolving and preventing drug-related problems, clinical pharmacy services with a focus on disease management, or clinical pharmacy services with a focus on patient education in order to increase medication knowledge. Anaemia was the most common comorbidity managed by clinical pharmacists, and their involvement led to significant improvement in investigated disease-oriented outcomes, for example, haemoglobin levels. Only four of the studies (including three controlled trials) presented data on patient-oriented outcomes, for example, quality of life and length of hospitalisation. Studies investigating the number and type of clinical pharmacist interventions and physician acceptance rates reported a mean acceptance rate of 79%. The most common reported drug-related problems were incorrect dosing, the need for additional pharmacotherapy, and medical record discrepancies.</p> <p>Conclusions</p> <p>Few high-quality trials addressing the benefit and impact of clinical pharmacy services in CKD and ESRD patients have been published. However, all available studies reported some positive impact resulting from clinical pharmacist involvement, including various investigated outcome measures that could be improved. Additional randomised controlled trials investigating patient-oriented outcomes are needed to further determine the role of clinical pharmacists and the benefits of clinical pharmacy services to CKD and ESRD patients.</p

    Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease

    Get PDF
    The sphingosine-1-phosphate receptor-1 (S1P1) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here, we examine the cell subsets that express S1P1 in intestine using S1P1-eGFP mice, the regulation of S1P1 expression in lymphocytes after administration of dextran sulfate sodium (DSS), after colitis induced by transfer of CD4+CD45RBhi cells, and by crossing a mouse with TNF-driven ileitis with S1P1-eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P1 expression. We found that not only T and B cells express S1P1, but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P1 expression, while the enzymes that control tissue S1P levels in mice and humans with inflammatory bowel disease (IBD) were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T-cell velocity and induced S1P1 degradation and retention of Naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function

    A Novel Conserved Isoform of the Ubiquitin Ligase UFD2a/UBE4B Is Expressed Exclusively in Mature Striated Muscle Cells

    Get PDF
    Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish), UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3′ introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis

    Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases

    Full text link
    corecore