12 research outputs found

    Transport Properties of Carbon-Nanotube/Cement Composites

    No full text
    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) reinforced cement-based composites by applying ultrasonic energy in combination with the use of surfactants (sodium dodecylbenzene sulfonate and sodium dodecyl sulfate). Experimental results indicate that even at a very small dosage the addition of MWNTs can help decrease water sorptivity coefficient, water permeability coefficient, and gas permeability coefficient of cement mortar, which suggests that CNTs can effectively improve the durability properties of cement-based composites.Structural EngineeringCivil Engineering and Geoscience

    Effect of fine to coarse aggregate ratio on the rheology and fracture energy of steel fibre reinforced self-compacting concretes

    No full text
    In this study, the influence of aggregate grading and steel fibre properties on the flow properties and fracture energy of steel fibre reinforced self-compacting concrete (SFRSCC) has been investigated. Two types of hooked-end steel fibres at three different dosages (20,40 and 60 kg/m(3)) were incorporated into self-compacting mixtures having similar paste contents but different fine to coarse aggregate (FA/CA) ratios (0.94, 1.72 and 2.50 by weight). Besides the flowability and passing ability of fresh concrete, the mechanical properties of hardened concrete including the fracture energy have also been investigated. The relations between flexural parameters and fibre orientation were established by image analysis technique. Test results showed that hooked-end steel fibre inclusion into the plain self-compacting concrete negatively affects the flowability and passing ability of the mixture. Increasing FA/CA ratio enhances these rheological parameters and provides better fibre orientation. On the other hand, increasing FA/CA ratio decreases the fracture energy of plain SCC mixtures and the fibre incorporated series which were less affected from fibre inclusion follow the same trend with the plain SCC. The proper FA/CA ratio for the best rheological and mechanical performance depends on the fibre content, aspect ratio and their influence on the flowability of the mixture. In order to obtain better fibre orientation and hence higher fracture energy, relatively higher FA/CA ratios should be used when the fibre content and aspect ratio are relatively high
    corecore