24 research outputs found

    Nekrasov Functions and Exact Bohr-Sommerfeld Integrals

    Full text link
    In the case of SU(2), associated by the AGT relation to the 2d Liouville theory, the Seiberg-Witten prepotential is constructed from the Bohr-Sommerfeld periods of 1d sine-Gordon model. If the same construction is literally applied to monodromies of exact wave functions, the prepotential turns into the one-parametric Nekrasov prepotential F(a,\epsilon_1) with the other epsilon parameter vanishing, \epsilon_2=0, and \epsilon_1 playing the role of the Planck constant in the sine-Gordon Shroedinger equation, \hbar=\epsilon_1. This seems to be in accordance with the recent claim in arXiv:0908.4052 and poses a problem of describing the full Nekrasov function as a seemingly straightforward double-parametric quantization of sine-Gordon model. This also provides a new link between the Liouville and sine-Gordon theories.Comment: 10 page

    The matrix model version of AGT conjecture and CIV-DV prepotential

    Full text link
    Recently exact formulas were provided for partition function of conformal (multi-Penner) beta-ensemble in the Dijkgraaf-Vafa phase, which, if interpreted as Dotsenko-Fateev correlator of screenings and analytically continued in the number of screening insertions, represents generic Virasoro conformal blocks. Actually these formulas describe the lowest terms of the q_a-expansion, where q_a parameterize the shape of the Penner potential, and are exact in the filling numbers N_a. At the same time, the older theory of CIV-DV prepotential, straightforwardly extended to arbitrary beta and to non-polynomial potentials, provides an alternative expansion: in powers of N_a and exact in q_a. We check that the two expansions coincide in the overlapping region, i.e. for the lowest terms of expansions in both q_a and N_a. This coincidence is somewhat non-trivial, since the two methods use different integration contours: integrals in one case are of the B-function (Euler-Selberg) type, while in the other case they are Gaussian integrals.Comment: 27 pages, 1 figur

    Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions

    Full text link
    We give a concise summary of the impressive recent development unifying a number of different fundamental subjects. The quiver Nekrasov functions (generalized hypergeometric series) form a full basis for all conformal blocks of the Virasoro algebra and are sufficient to provide the same for some (special) conformal blocks of W-algebras. They can be described in terms of Seiberg-Witten theory, with the SW differential given by the 1-point resolvent in the DV phase of the quiver (discrete or conformal) matrix model (\beta-ensemble), dS = ydz + O(\epsilon^2) = \sum_p \epsilon^{2p} \rho_\beta^{(p|1)}(z), where \epsilon and \beta are related to the LNS parameters \epsilon_1 and \epsilon_2. This provides explicit formulas for conformal blocks in terms of analytically continued contour integrals and resolves the old puzzle of the free-field description of generic conformal blocks through the Dotsenko-Fateev integrals. Most important, this completes the GKMMM description of SW theory in terms of integrability theory with the help of exact BS integrals, and provides an extended manifestation of the basic principle which states that the effective actions are the tau-functions of integrable hierarchies.Comment: 14 page
    corecore