4 research outputs found

    Circulating tumour cells and their association with bone metastases in patients with neuroendocrine tumours

    Get PDF
    BACKGROUND: Bone metastases are associated with a worse outcome in patients with neuroendocrine tumours (NETs). Tumour overexpression of C-X-C chemokine receptor 4 (CXCR4) appears predictive of skeletal involvement. We investigated the role of circulating tumour cells (CTCs) and CXCR4 expression on CTCs as potential predictors of skeleton invasion. METHODS: Blood from patients with metastatic bronchial, midgut or pancreatic NET (pNET) was analysed by CellSearch. CXCR4 immunohistochemistry was performed on matched formalin-fixed paraffin-embedded (FFPE) samples. RESULTS: Two hundred and fifty-four patients were recruited with 121 midgut and 119 pNETs, of which 51 and 36% had detectable CTCs, respectively. Bone metastases were reported in 30% of midgut and 23% of pNET patients and were significantly associated with CTC presence (p = 0.003 and p < 0.0001). In a subgroup of 40 patients, 85% patients with CTCs had CTCs positive for CXCR4 expression. The proportion of CXCR4-positive CTCs in patients with bone metastases was 56% compared to 35% in those without (p = 0.18) it. Staining for CXCR4 on matched FFPE tissue showed a trend towards a correlation with CXCR4 expression on CTCs (p = 0.08). CONCLUSIONS: CTC presence is associated with bone metastases in NETs. CXCR4 may be involved in CTC osteotropism and present a therapeutic target to reduce skeletal morbidity

    Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility

    No full text
    BACKGROUND: Identifying cellular signaling pathways that become corrupted in the presence of androgens that increase the metastatic potential of organ-confined tumor cells is critical to devising strategies capable of attenuating the metastatic progression of hormone-naïve, organ-confined tumors. In localized prostate cancers, gene fusions that place ETS-family transcription factors under the control of androgens drive gene expression programs that increase the invasiveness of organ-confined tumor cells. C-X-C chemokine receptor type 4 (CXCR4) is a downstream target of ERG, whose upregulation in prostate-tumor cells contributes to their migration from the prostate gland. Recent evidence suggests that CXCR4-mediated proliferation and metastasis of tumor cells is regulated by CXCR7 through its scavenging of chemokine CXCL12. However, the role of androgens in regulating CXCR4-mediated motility with respect to CXCR7 function in prostate-cancer cells remains unclear. METHODS: Immunocytochemistry, western blot, and affinity-purification analyses were used to study how androgens influenced the expression, subcellular localization, and function of CXCR7, CXCR4, and androgen receptor (AR) in LNCaP prostate-tumor cells. Moreover, luciferase assays and quantitative polymerase chain reaction (qPCR) were used to study how chemokines CXCL11 and CXCL12 regulate androgen-regulated genes (ARGs) in LNCaP prostate-tumor cells. Lastly, cell motility assays were carried out to determine how androgens influenced CXCR4-dependent motility through CXCL12. RESULTS: Here we show that, in the LNCaP prostate-tumor cell line, androgens coordinate the expression of CXCR4 and CXCR7, thereby promoting CXCL12/CXCR4-mediated cell motility. RNA interference experiments revealed functional interactions between AR and CXCR7 in these cells. Co-localization and affinity-purification experiments support a physical interaction between AR and CXCR7 in LNCaP cells. Unexpectedly, CXCR7 resided in the nuclear compartment and modulated AR-mediated transcription. Moreover, androgen-mediated cell motility correlated positively with the co-localization of CXCR4 and CXCR7 receptors, suggesting that cell migration may be linked to functional CXCR4/CXCR7 heterodimers. Lastly, CXCL12-mediated cell motility was CXCR7-dependent, with CXCR7 expression required for optimal expression of CXCR4 protein. CONCLUSIONS: Overall, our results suggest that inhibition of CXCR7 function might decrease the metastatic potential of organ-confined prostate cancers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-015-1201-5) contains supplementary material, which is available to authorized users
    corecore