34 research outputs found

    Unique activities of two overlapping PAX6 retinal enhancers

    Get PDF
    Enhancers play a critical role in development by precisely modulating spatial, temporal, and cell type-specific gene expression. Sequence variants in enhancers have been implicated in diseases; however, establishing the functional consequences of these variants is challenging because of a lack of understanding of precise cell types and developmental stages where the enhancers are normally active. PAX6 is the master regulator of eye development, with a regulatory landscape containing multiple enhancers driving the expression in the eye. Whether these enhancers perform additive, redundant or distinct functions is unknown. Here, we describe the precise cell types and regulatory activity of two PAX6 retinal enhancers, HS5 and NRE. Using a unique combination of live imaging and single-cell RNA sequencing in dual enhancer-reporter zebrafish embryos, we uncover differences in the spatiotemporal activity of these enhancers. Our results show that although overlapping, these enhancers have distinct activities in different cell types and therefore likely nonredundant functions. This work demonstrates that unique cell type-specific activities can be uncovered for apparently similar enhancers when investigated at high resolution in vivo

    The History of Makassan Trepang Fishing and Trade

    Get PDF
    The Malayan term trepang describes a variety of edible holothurians commonly known as sea cucumbers. Although found in temperate and tropical marine waters all over the world, the centre of species diversity and abundance are the shallow coastal waters of Island Southeast Asia. For at least 300 years, trepang has been a highly priced commodity in the Chinese market. Originally, its fishing and trade was a specialized business, centred on the town of Makassar in South Sulawesi (Indonesia). The rise of trepang fishing in the 17th century added valuable export merchandize to the rich shallow seas surrounding the islands of Southeast Asia. This enabled local communities to become part of large trading networks and greatly supported their economic development. In this article, we follow Makassan trepang fishing and trading from its beginning until the industrialization of the fishery and worldwide depletion of sea cucumbers in the 20th century. Thereby, we identify a number of characteristics which trepang fishing shares with the exploitation of other marine resources, including (1) a strong influence of international markets, (2) the role of patron-client relationships which heavily influence the resource selection, and (3) the roving-bandit-syndrome, where fishermen exploit local stocks of valuable resources until they are depleted, and then move to another area. We suggest that understanding the similarities and differences between historical and recent exploitation of marine resources is an important step towards effective management solutions

    Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    Get PDF
    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi

    Unravelling higher order chromatin organisation through statistical analysis

    Get PDF
    Recent technological advances underpinned by high throughput sequencing have given new insights into the three-dimensional structure of mammalian genomes. Chromatin conformation assays have been the critical development in this area, particularly the Hi-C method which ascertains genome-wide patterns of intra and inter-chromosomal contacts. However many open questions remain concerning the functional relevance of such higher order structure, the extent to which it varies, and how it relates to other features of the genomic and epigenomic landscape. Current knowledge of nuclear architecture describes a hierarchical organisation ranging from small loops between individual loci, to megabase-sized self-interacting topological domains (TADs), encompassed within large multimegabase chromosome compartments. In parallel with the discovery of these strata, the ENCODE project has generated vast amounts of data through ChIP-seq, RNA-seq and other assays applied to a wide variety of cell types, forming a comprehensive bioinformatics resource. In this work we combine Hi-C datasets describing physical genomic contacts with a large and diverse array of chromatin features derived at a much finer scale in the same mammalian cell types. These features include levels of bound transcription factors, histone modifications and expression data. These data are then integrated in a statistically rigorous way, through a predictive modelling framework from the machine learning field. These studies were extended, within a collaborative project, to encompass a dataset of matched Hi-C and expression data collected over a murine neural differentiation timecourse. We compare higher order chromatin organisation across a variety of human cell types and find pervasive conservation of chromatin organisation at multiple scales. We also identify structurally variable regions between cell types, that are rich in active enhancers and contain loci of known cell-type specific function. We show that broad aspects of higher order chromatin organisation, such as nuclear compartment domains, can be accurately predicted in a variety of human cell types, using models based upon underlying chromatin features. We dissect these quantitative models and find them to be generalisable to novel cell types, presumably reflecting fundamental biological rules linking compartments with key activating and repressive signals. These models describe the strong interconnectedness between locus-level patterns of local histone modifications and bound factors, on the order of hundreds or thousands of basepairs, with much broader compartmentalisation of large, multi-megabase chromosomal regions. Finally, boundary regions are investigated in terms of chromatin features and co-localisation with other known nuclear structures, such as association with the nuclear lamina. We find boundary complexity to vary between cell types and link TAD aggregations to previously described lamina-associated domains, as well as exploring the concept of meta-boundaries that span multiple levels of organisation. Together these analyses lend quantitative evidence to a model of higher order genome organisation that is largely stable between cell types, but can selectively vary locally, based on the activation or repression of key loci

    Effects of DNA supercoiling on chromatin architecture

    Get PDF
    Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo
    corecore