28 research outputs found

    Lifestyle interventions are feasible in patients with colorectal cancer with potential short-term health benefits:a systematic review

    Get PDF
    Purpose: Lifestyle interventions have been proposed to improve cancer survivorship in patients with colorectal cancer (CRC), but with treatment pathways becoming increasingly multi-modal and prolonged, opportunities for interventions may be limited. This systematic review assessed the evidence for the feasibility of performing lifestyle interventions in CRC patients and evaluated any short- and long-term health benefits. Methods: Using PRISMA Guidelines, selected keywords identified randomised controlled studies (RCTs) of lifestyle interventions [smoking, alcohol, physical activity (PA) and diet/excess body weight] in CRC patients. These electronic databases were searched in June 2015: Dynamed, Cochrane Database, OVID MEDLINE, OVID EMBASE, and PEDro. Results: Fourteen RCTs were identified: PA RCTs (n = 10) consisted mainly of telephone-prompted walking or cycling interventions of varied durations, predominately in adjuvant setting; dietary/excess weight interventions RCTs (n = 4) focused on low-fat and/or high-fibre diets within a multi-modal lifestyle intervention. There were no reported RCTs in smoking or alcohol cessation/reduction. PA and/or dietary/excess weight interventions reported variable recruitment rates, but good adherence and retention/follow-up rates, leading to short-term improvements in dietary quality, physical, psychological and quality-of-life parameters. Only one study assessed long-term follow-up, finding significantly improved cancer-specific survival after dietary intervention. Conclusions: This is the first systematic review on lifestyle interventions in patients with CRC finding these interventions to be feasible with improvements in short-term health. Future work should focus on defining the optimal type of intervention (type, duration, timing and intensity) that not only leads to improved short-term outcomes but also assesses long-term survival

    Genetics and Breast Cancer – Oncologists Perspectives

    No full text

    Enhanced tumor cell killing by ultrasound after microtubule depolymerization

    No full text
    Recent studies show that tumor cells are vulnerable to mechanical stresses and undergo calcium‐dependent apoptosis (mechanoptosis) with mechanical perturbation by low‐frequency ultrasound alone. To determine if tumor cells are particularly sensitive to mechanical stress in certain phases of the cell cycle, inhibitors of the cell‐cycle phases are tested for effects on mechanoptosis. Most inhibitors show no significant effect, but inhibitors of mitosis that cause microtubule depolymerization increase the mechanoptosis. Surprisingly, ultrasound treatment also disrupts microtubules independent of inhibitors in tumor cells but not in normal cells. Ultrasound causes calcium entry through mechanosensitive Piezo1 channels that disrupts microtubules via calpain protease activation. Myosin IIA contractility is required for ultrasound‐mediated mechanoptosis and microtubule disruption enhances myosin IIA contractility through activation of GEF‐H1 and RhoA pathway. Further, ultrasound promotes contractility‐dependent Piezo1 expression and localization to the peripheral adhesions where activated Piezo1 allows calcium entry to continue feedback loop. Thus, the synergistic action of ultrasound and nanomolar concentrations of microtubule depolymerizing agents can enhance tumor therapies

    EO771, is it a well-characterized cell line for mouse mammary cancer model? Limit and uncertainty

    No full text
    International audienceAmong mouse mammary tumor models, syngeneic cell lines present an advantage for the study of immune response. However, few of these models are well characterized. The tumor line EO771 is derived from spontaneous breast cancer of C57BL/6 mice. These cells are widely used but are referenced under different names: EO771, EO 771, and E0771. The characteristics of the EO771 cells are well described but some data are contradictory. This cell line presents the great interest of developing an immunocompetent neoplastic model using an orthotopic implantation reflecting the mammary tumors encountered in breast cancer patients. This review presents the phenotype characteristics of EO771 and its sensitivity to nutrients and different therapies such as radiotherapy, chemotherapy, hormone therapy, and immunotherapy
    corecore