1,603 research outputs found

    White dwarf cooling sequences and cosmochronology

    Full text link
    The evolution of white dwarfs is a simple gravothermal process. This means that their luminosity function, i.e. the number of white dwarfs per unit bolometric magnitude and unit volume as a function of bolometric magnitude, is a monotonically increasing function that decreases abruptly as a consequence of the finite age of the Galaxy. The precision and the accuracy of the white dwarf luminosity functions obtained with the recent large surveys together with the improved quality of the theoretical models of evolution of white dwarfs allow to feed the hope that in a near future it will be possible to reconstruct the history of the different Galactic populations.Comment: Proceedings of the 40th Liege International Astrophysical Colloquium: Aging low mass stars: from red giants to white dwarf

    Modelling the effect of vertical mixing on bottle incubations for determining in situ phytoplankton dynamics. I. Growth rates

    Get PDF
    Reliable estimates of in situ phytoplankton growth rates are central to understanding the dynamics of aquatic ecosystems. A common approach for estimating in situ growth rates is to incubate natural phytoplankton assemblages in clear bottles at fixed depths or irradiance levels and measure the change in chlorophyll a (Chl) over the incubation period (typically 24 h). Using a modelling approach, we investigate the accuracy of these Chl-based methods focussing on 2 aspects: (1) in a freely mixing surface layer, the cells are typically not in balanced growth, and with photoacclimation, changes in Chl may yield different growth rates than changes in carbon; and (2) the in vitro methods neglect any vertical movement due to turbulence and its effect on the cells' light history. The growth rates thus strongly depend on the incubation depth and are not necessarily representative of the depth-integrated in situ growth rate in the freely mixing surface layer. We employ an individual based turbulence and photosynthesis model, which also accounts for photoacclimation and photo - inhibition, to show that the in vitro Chl-based growth rate can differ both from its carbon-based in vitro equivalent and from the in situ value by up to 100%, depending on turbulence intensity, optical depth of the mixing layer, and incubation depth within the layer. We make recommendations for choosing the best depth for single-depth incubations. Furthermore we demonstrate that, if incubation bottles are being oscillated up and down through the water column, these systematic errors can be significantly reduced. In the present study, we focus on Chl-based methods only, while productivity measurements using carbon-based techniques (e.g. 14C) are discussed in Ross et al. (2011; Mar Ecol Prog Ser 435:33-45). © Inter-Research 2011

    Three-dimensional measurements with a novel technique combination of confocal and focus variation with a simultaneous scan

    Get PDF
    The most common optical measurement technologies used today for the three dimensional measurement of technical surfaces are Coherence Scanning Interferometry (CSI), Imaging Confocal Microscopy (IC), and Focus Variation (FV). Each one has its benefits and its drawbacks. FV will be the ideal technology for the measurement of those regions where the slopes are high and where the surface is very rough, while CSI and IC will provide better results for smoother and flatter surface regions. In this work we investigated the benefits and drawbacks of combining Interferometry, Confocal and focus variation to get better measurement of technical surfaces. We investigated a way of using Microdisplay Scanning type of Confocal Microscope to acquire on a simultaneous scan confocal and focus Variation information to reconstruct a three dimensional measurement. Several methods are presented to fuse the optical sectioning properties of both techniques as well as the topographical information. This work shows the benefit of this combination technique on several industrial samples where neither confocal nor focus variation is able to provide optimal results.Postprint (author's final draft

    Phylogeny and synonymy of Gyrodinium heterostriatum comb. nov. (Dinophyceae), a common unarmored dinoflagellate in the world oceans

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gómez, F., Artigas, L.F., Gast, R.J. Phylogeny and synonymy of Gyrodinium heterostriatum comb. nov. (Dinophyceae), a common unarmored dinoflagellate in the world oceans. Acta Protozoologica, 59 (2), (2020): 77-87, doi: 10.4467/16890027AP.20.007.12675.The North Sea and the English Channel are regions with a long tradition of plankton studies, where the colony-forming haptophyte Phaeocystis globosa dominates the spring phytoplankton blooms. Among its predators, we investigated an abundant unarmored dinoflagellate (~3000 cells per liter) in the North Sea in May 2019. It has been reported in the literature as Gymnodinium heterostriatum or G. striatissimum, and often identified as Gyrodinium spirale. Phylogenetic analyses using the small-, large subunit- and Internal Transcriber Spacers of the ribosomal RNA (SSU-, LSU-, ITS rRNA) gene sequences indicate that our isolates clustered within the Gyrodinium clade. The new sequences formed a sister group with sequences of the freshwater taxon Gyrodinium helveticum, being one of the infrequent marine-freshwater transitions in the microbial world. This isolate is the first characterized member of a clade of numerous environmental sequences widely distributed from cold to tropical seas. This common and abundant taxon has received several names due to its morphological plasticity (changes of size and shape, often deformed after engulfing prey) and the difficulty in discerning surface striation. We conclude that the priority is for the species name Gymnodinium heterostriatum Kofoid & Swezy 1921, a new name that was proposed for Gymnodinium spirale var. obtusum sensu Dogiel 1906. The species Gyrodinium striatissimum (Hulburt 1957) Gert Hansen & Moestrup 2000 and Gymnodinium lucidum D. Ballantine in Parke & Dixon 1964 (=G. hyalinum M. Lebour 1925) are posterior synonyms. We propose Gyrodinium heterostriatum comb. nov. for Gymnodinium heterostriatum.F.G. was partly supported by the convention #2101893310 between CNRS INSU and the French Ministry of Ecology (MTES) for the implementation of the Monitoring Program of the European Marine Strategy Framework directive (MSFD) for pelagic habitats and the descriptor ‘biodiversity’. Samples were collected within the framework of JERICO-NEXT (www.jerico-ri.eu), a European (H2020) project to establish a joint international network of coastal observatories, during a 4-day collaborative monitoring campaign of the Southern North Sea. Part of the infrastructure and data were provided by VLIZ (Flanders Marine Institute) and funded by Research Foundation-Flanders (FWO) as part of the Belgian contribution to the LifeWatch project

    Calorimetric and acoustic study of binary mixtures containing an isomeric chlorobutane and butyl ethyl ether or methyl tert-butyl ether

    Get PDF
    Densities and speeds of sound in the temperature range 283.15-313.15 K have been measured for the binary mixtures formed by an isomeric chlorobutane (1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, or 2-chloro-2-methylpropane) and butyl ethyl ether or methyl tert-butyl ether. Excess isentropic compressibilities were calculated from the experimental data. Excess enthalpies at T = 298.15 K are also included for the same binary mixtures. All these properties provide an insight into the nature of interactions operating on the present systems. Finally, the Prigogine-Flory-Patterson theory has been used to analyze the H E results and to estimate the isentropic compressibility values of the mixtures at T = 298.15 K

    Vessel Recognition in Induction Heating Appliances - A Deep-Learning Approach

    Get PDF
    The selection of a vessel by an induction-hob user has a significant impact on the performance of the appliance. Due to the induction heating physical phenomena, there exist many factors that modify the equivalent impedance of induction hobs and, consequently, the operational conditions of the inverter. In particular, the type of vessel, which is a sole decision of the user, strongly affects these parameters. Besides, the ferromagnetic properties of the different materials the vessels are made with, vary differently with the excitation level, and given that most of the domestic induction hobs are based on an ac-bus voltage arrangement, the excitation level continuously varies. The algorithm proposed in this work takes advantage of this fact to identify the equivalent impedance of the load and recognize the pot. This is accomplished through a phase-sensitive detector that was already proposed in the literature and the application of deep learning. Different convolutional neural networks are tested on an augmented experimental-based dataset and the proposed algorithm is implemented in an experimental prototype with a system-on-chip. The proposed implementation is presented as an effective and accurate method to characterize and discriminate between different pots that could enable further functionalities in new generations of induction hobs

    Polarization conversion spectroscopy of hybrid modes

    Full text link
    Enhanced polarization conversion in reflection for the Otto and Kretschmann configurations is introduced as a new method for hybrid-mode spectroscopy. Polarization conversion in reflection appears when hybrid-modes are excited in a guiding structure composed of at least one anisotropic media. In contrast to a dark dip, in this case modes are associated to a peak in the converted reflectance spectrum, increasing the detection sensitivity and avoiding confusion with reflection dips associated with other processes as can be transmission.Comment: 4 pages, 4 figure

    Optical Bistability in Nonlinear Optical Coupler with Negative Index Channel

    Full text link
    We discuss a novel kind of nonlinear coupler with one channel filled with a negative index material (NIM). The opposite directionality of the phase velocity and the energy flow in the NIM channel facilitates an effective feedback mechanism that leads to optical bistability and gap soliton formation
    • …
    corecore