13 research outputs found

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)

    Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New β-Cell Cluster Model

    Get PDF
    The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of β cells in each islet. The functional role of islet β cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP) cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP) cluster that is conventionally used. Using our new model we investigated the functional characteristics of β-cell clusters, including the fraction of cells able to burst fb, the synchronization index λ of the bursting β cells, the bursting period Tb, the plateau fraction pf, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells nβ, number of inter-β cell couplings of each β cell nc, and the coupling strength gc. We found that at low values of nβ, nc and gc, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at nβ∼100, nc∼6 and gc∼200 pS. In addition, normal β-cell clusters are robust against significant perturbation to their architecture, including the presence of non-β cells or dead β cells. In clusters with nβ>∼100, coordinated β-cell bursting can be maintained at up to 70% of β-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a β-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are important to understand the islet bursting phenomenon and the regulation of insulin secretion, under both physiological and pathological conditions

    Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications

    No full text
    10.1007/s11157-012-9278-7Reviews in Environmental Science and Biotechnology112169-206RESB
    corecore