22 research outputs found

    Gravitational waves from deflagration bubbles in first-order phase transitions

    Full text link
    The walls of bubbles in a first-order phase transition can propagate either as detonations, with a velocity larger than the speed of sound, or deflagrations, which are subsonic. We calculate the gravitational radiation that is produced by turbulence during a phase transition which develops via deflagration bubbles. We take into account the fact that a deflagration wall is preceded by a shock front which distributes the latent heat throughout space and influences other bubbles. We show that turbulence can induce peak values of ΩGW\Omega_{GW} as high as ∼10−9\sim 10^{-9}. We discuss the possibility of detecting at LISA gravitational waves produced in the electroweak phase transition with wall velocities vw≲10−1v_w\lesssim 10^{-1}, which favor electroweak baryogenesis.Comment: 13 pages, 1 figure; calculations of section IV repeated using recent results for the GW spectrum from turbulence, comments added in all sections, references added, conclusions unchange

    Development of the electroweak phase transition and baryogenesis

    Full text link
    We investigate the evolution of the electroweak phase transition, using a one-Higgs effective potential that can be regarded as an approximation for the Minimal Supersymmetric Standard Model. The phase transition occurs in a small interval around a temperature T_t below the critical one. We calculate this temperature as a function of the parameters of the potential and of a damping coefficient related to the viscosity of the plasma. The parameters that are relevant for baryogenesis, such as the velocity and thickness of the walls of bubbles and the value of the Higgs field inside them, change significantly in the range of temperatures where the first-order phase transition can occur. However, we find that in the likely interval for T_t there is no significant variation of these parameters. Furthermore, the temperature T_t is in general not far below the temperature at which bubbles begin to nucleate.Comment: 26 pages, 7 figures; typos corrected, reference adde

    Supercooling and phase coexistence in cosmological phase transitions

    Full text link
    Cosmological phase transitions are predicted by Particle Physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.Comment: 25 pages, 10 figures. References added and minor corrections. Version to appear in Phys. Rev.

    Analytic approach to the motion of cosmological phase transition fronts

    Full text link
    We consider the motion of planar phase-transition fronts in first-order phase transitions of the Universe. We find the steady state wall velocity as a function of a friction coefficient and thermodynamical parameters, taking into account the different hydrodynamic modes of propagation. We obtain analytical approximations for the velocity by using the thin wall approximation and the bag equation of state. We compare our results to those of numerical calculations and discuss the range of validity of the approximations. We analyze the structure of the stationary solutions. Multiple solutions may exist for a given set of parameters, even after discarding non-physical ones. We discuss which of these will be realized in the phase transition as the stationary wall velocity. Finally, we discuss on the saturation of the friction at ultra-relativistic velocities and the existence of runaway solutions.Comment: 25 pages, 9 figures. The title has changed. A discussion on the saturation of the friction and the possibility of runaway walls has been adde

    Effect of reheating on electroweak baryogenesis

    Get PDF
    The latent heat released during the expansion of bubbles in the electroweak phase transition reheats the plasma and causes the bubble growth to slow down. This decrease of the bubble wall velocity affects the result of electroweak baryogenesis. Since the efficiency of baryogenesis peaks for a wall velocity ∼10−2\sim 10^{-2}, the resulting baryon asymmetry can either be enhanced or suppressed, depending on the initial value of the wall velocity. We calculate the evolution of the phase transition taking into account the release of latent heat. We find that, although in the SM the baryon production is enhanced by this effect, in the MSSM it causes a suppression to the final baryon asymmetry.Comment: 4 pages, 3 figures. References added. Revised version to be published in Phys.Rev.

    Stability of Modified Electroweak Strings

    Full text link
    We discuss the stability of an electroweak string with axions in its core, which give to the configuration a quasi-topological property, and compare it with other modifications using instantons in the thin wall approximation.Comment: Minor changes and inclusion of one figure. To be published on Z. f. Physik C. 11 pages, 1 postcript figur

    Detonations and deflagrations in cosmological phase transitions

    Full text link
    We study the steady state motion of bubble walls in cosmological phase transitions. Taking into account the boundary and continuity conditions for the fluid variables, we calculate numerically the wall velocity as a function of the nucleation temperature, the latent heat, and a friction parameter. We determine regions in the space of these parameters in which detonations and/or deflagrations are allowed. In order to apply the results to a physical case, we calculate these quantities in a specific model, which consists of an extension of the Standard Model with singlet scalar fields. We also obtain analytic approximations for the wall velocity, both in the case of deflagrations and of detonations.Comment: 31 pages, 14 figures. v2: several clarifications added, a change of notation. v3: reference added. Version to appear in Nucl. Phys.

    First-order cosmological phase transitions in the radiation dominated era

    Full text link
    We consider first-order phase transitions of the Universe in the radiation-dominated era. We argue that in general the velocity of interfaces is non-relativistic due to the interaction with the plasma and the release of latent heat. We study the general evolution of such slow phase transitions, which comprise essentially a short reheating stage and a longer phase equilibrium stage. We perform a completely analytical description of both stages. Some rough approximations are needed for the first stage, due to the non-trivial relations between the quantities that determine the variation of temperature with time. The second stage, instead, is considerably simplified by the fact that it develops at a constant temperature, close to the critical one. Indeed, in this case the equations can be solved exactly, including back-reaction on the expansion of the Universe. This treatment also applies to phase transitions mediated by impurities. We also investigate the relations between the different parameters that govern the characteristics of the phase transition and its cosmological consequences, and discuss the dependence of these parameters with the particle content of the theory.Comment: 38 pages, 3 figures; v2: Minor changes, references added; v3: several typos correcte
    corecore