9,218 research outputs found
Microscopic theory of solvent mediated long range forces: influence of wetting
We show that a general density functional approach for calculating the force
between two big particles immersed in a solvent of smaller ones can describe
systems that exhibit fluid-fluid phase separation: the theory captures effects
of strong adsorption (wetting) and of critical fluctuations in the solvent. We
illustrate the approach for the Gaussian core model, a simple model of a
polymer mixture in solution and find extremely attractive, long ranged solvent
mediated potentials between the big particles for state points lying close to
the binodal, on the side where the solvent is poor in the species which is
favoured by the big particles.Comment: 7 pages, 3 figures, submitted to Europhysics Letter
Phase II study of tight glycaemic control in COPD patients with exacerbations admitted to the acute medical unit.
BACKGROUND: Hyperglycaemia is associated with poor outcomes from exacerbations of chronic obstructive pulmonary disease (COPD). Glycaemic control could improve outcomes by reducing infection, inflammation and myopathy. Most patients with COPD are managed on the acute medical unit (AMU) outside intensive care (ICU).
OBJECTIVE: To determine the feasibility, safety and efficacy of tight glycaemic control in patients on an AMU.
DESIGN: Prospective, non-randomised, phase II, single-arm study of tight glycaemic control in COPD patients with acute exacerbations and hyperglycaemia admitted to the AMU. Participants received intravenous, then subcutaneous, insulin to control blood glucose to 4.4-6.5 mmol/l. Tight glycaemic control was evaluated: feasibility, protocol adherence; acceptability, patient questionnaire; safety, frequency of hypoglycaemia (capillary blood glucose (CBG) <2.2 mmol/l and 2.2-3.3 mmol/l); efficacy, median CBG, fasting CBG, proportion of measurements/time in target range, glycaemic variability.
RESULTS: were compared with 25 published ICU studies. Results 20 patients (10 females, age 71 ± 9 years; forced expiratory volume in 1 s: 41 ± 16% predicted) were recruited. Tight glycaemic control was feasible (78% CBG measurements and 89% of insulin-dose adjustments were adherent to protocol) and acceptable to patients. 0.2% CBG measurements were <2.2 mmol/l and 4.1% measurements 2.2-3.3 mmol/l. The study CBG and proportion of measurements/time in target range were similar to that of ICU studies, whereas the fasting CBG was lower, and the glycaemic variability was greater.
CONCLUSIONS: Tight glycaemic control is feasible and has similar safety and efficacy on AMU to ICU. However, as more recent ICU studies have shown no benefit and possible harm from tight glycaemic control, alternative strategies for blood glucose control in COPD exacerbations should now be explored. Trial registration number ISRCTN: 42412334. http://Clinical.Trials.gov NCT00764556
Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation
Recent experiments have shown that the striking structure formation in
dewetting films of evaporating colloidal nanoparticle suspensions occurs in an
ultrathin `postcursor' layer that is left behind by a mesoscopic dewetting
front. Various phase change and transport processes occur in the postcursor
layer, that may lead to nanoparticle deposits in the form of labyrinthine,
network or strongly branched `finger' structures. We develop a versatile
dynamical density functional theory to model this system which captures all
these structures and may be employed to investigate the influence of
evaporation/condensation, nanoparticle transport and solute transport in a
differentiated way. We highlight, in particular, the influence of the subtle
interplay of decomposition in the layer and contact line motion on the observed
particle-induced transverse instability of the dewetting front.Comment: 5 pages, 5 figure
Structure-activity relationships in nitrosamine carcinogenesis.
Statistically significant correlations have been demonstrated between carcinogenic activity, toxicity and number of carbons per molecule for an extensive set of nitrosamines. Such correlations, involving only bulk molecular properties indicate that the chemical nature of the alkyl substituents need not be the sole determinants of carcinogenic activity. These structure-activity relationships can be used to estimate carcinogenic activity with some degree of confidence
Phase separation in fluids exposed to spatially periodic external fields
We consider the liquid-vapor type phase transition for fluids confined within
spatially periodic external fields. For a fluid in d=3 dimensions, the periodic
field induces an additional phase, characterized by large density modulations
along the field direction. At the triple point, all three phases (modulated,
vapor, and liquid) coexist. At temperatures slightly above the triple point and
for low (high) values of the chemical potential, two-phase coexistence between
the modulated phase and the vapor (liquid) is observed. We study this
phenomenon using computer simulations and mean-field theory for the Ising
model. The theory shows that, in order for the modulated phase to arise, the
field wavelength must exceed a threshold value. We also find an extremely low
tension of the interface between the modulated phase and the vapor/liquid
phases. The tension is of the order 10^{-4} kB T per squared lattice spacing,
where kB is the Boltzmann constant, and T the temperature. In order to detect
such low tensions, a new simulation method is proposed. We also consider the
case of d=2 dimensions. The modulated phase then does not survive, leading to a
radically different phase diagram.Comment: 11 pages, 14 figure
Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory
Recent experiments have shown that various structures may be formed during
the evaporative dewetting of thin films of colloidal suspensions. Nano-particle
deposits of strongly branched `flower-like', labyrinthine and network
structures are observed. They are caused by the different transport processes
and the rich phase behaviour of the system. We develop a model for the system,
based on a dynamical density functional theory, which reproduces these
structures. The model is employed to determine the influences of the solvent
evaporation and of the diffusion of the colloidal particles and of the liquid
over the surface. Finally, we investigate the conditions needed for
`liquid-particle' phase separation to occur and discuss its effect on the
self-organised nano-structures
Generation of defects and disorder from deeply quenching a liquid to form a solid
We show how deeply quenching a liquid to temperatures where it is linearly
unstable and the crystal is the equilibrium phase often produces crystalline
structures with defects and disorder. As the solid phase advances into the
liquid phase, the modulations in the density distribution created behind the
advancing solidification front do not necessarily have a wavelength that is the
same as the equilibrium crystal lattice spacing. This is because in a deep
enough quench the front propagation is governed by linear processes, but the
crystal lattice spacing is determined by nonlinear terms. The wavelength
mismatch can result in significant disorder behind the front that may or may
not persist in the latter stage dynamics. We support these observations by
presenting results from dynamical density functional theory calculations for
simple one- and two-component two-dimensional systems of soft core particles.Comment: 25 pages, 11 figure
In vitro toxin production by fusarium solani f. sp. piperis.
Fusarium solani f. sp. piperis (teleomórfico: Nectria haematococca f. sp. piperis) agente causal da podridão-das-raÃzes e do secamento-dos-ramos da pimenteira-do-reino (Piper nigrum) produz metabólitos secundários com propriedades tóxicas capazes de induzir descoloração das nervuras em folhas destacadas e murcha em micro-estacas. A produção de metabólitos tóxicos alcançou o pico após 25 dias de incubação, sob iluminação. Variações no pH do filtrado da cultura não aumentaram o efeito tóxico, entretanto, quando o pH foi ajustado antes da esterilização do meio de cultura, uma resposta biológica mais intensa foi observada, atingindo o máximo em pH 6,0. Isolados que produziram pigmentos vermelhos no meio de cultura foram mais eficientes em produzir filtrados biologicamente ativos do que aqueles que produziram filtrados de coloração rósea ou branca sugerindo que estes pigmentos podem estar relacionados com atividade toxigênica. Folhas destacadas de sete cultivares de pimenta-do-reino e Piper betle exibiram sintomas de descoloração das nervuras após imersão em filtrados autoclavado e não autoclavado indicando a natureza termoestável destes metabólitos tóxicos
Patient safety and quality of care in mental health: a world of its own?
Quality and safety in healthcare, as an academic discipline, has made significant progress over recent decades, and there is now an active and established community of researchers and practitioners. However, work has predominantly focused on physical health, despite broader controversy regarding the attention paid to, and significance attributed to, mental health. Work from both communities is required in order to ensure that quality and safety is actively embedded within mental health research and practice and that the academic discipline of quality and safety accurately represents the scientific knowledge that has been accumulated within the mental health community
- …