2 research outputs found

    Effect of air pollution on diabetes and cardiovascular diseases in São Paulo, Brazil

    Get PDF
    Type 2 diabetes increases the risk of cardiovascular mortality and these patients, even without previous myocardial infarction, run the risk of fatal coronary heart disease similar to non-diabetic patients surviving myocardial infarction. There is evidence showing that particulate matter air pollution is associated with increases in cardiopulmonary morbidity and mortality. The present study was carried out to evaluate the effect of diabetes mellitus on the association of air pollution with cardiovascular emergency room visits in a tertiary referral hospital in the city of São Paulo. Using a time-series approach, and adopting generalized linear Poisson regression models, we assessed the effect of daily variations in PM10, CO, NO2, SO2, and O3 on the daily number of emergency room visits for cardiovascular diseases in diabetic and non-diabetic patients from 2001 to 2003. A semi-parametric smoother (natural spline) was adopted to control long-term trends, linear term seasonal usage and weather variables. In this period, 45,000 cardiovascular emergency room visits were registered. The observed increase in interquartile range within the 2-day moving average of 8.0 µg/m³ SO2 was associated with 7.0% (95%CI: 4.0-11.0) and 20.0% (95%CI: 5.0-44.0) increases in cardiovascular disease emergency room visits by non-diabetic and diabetic groups, respectively. These data indicate that air pollution causes an increase of cardiovascular emergency room visits, and that diabetic patients are extremely susceptible to the adverse effects of air pollution on their health conditions.Disciplina de Clínica Médica, Departamento de MedicinaUniversidade de São Paulo - Laboratório de Poluição Atmosférica Experimental, Faculdade de Medicina, USP (FM-USP

    Genome association study through nonlinear mixed models revealed new candidate genes for pig growth curves

    No full text
    Genome association analyses have been successful in identifying quantitative trait loci (QTLs) for pig body weights measured at a single age. However, when considering the whole weight trajectories over time in the context of genome association analyses, it is important to look at the markers that affect growth curve parameters. The easiest way to consider them is via the two-step method, in which the growth curve parameters and marker effects are estimated separately, thereby resulting in a reduction of the statistical power and the precision of estimates. One efficient solution is to adopt nonlinear mixed models (NMM), which enables a joint modeling of the individual growth curves and marker effects. Our aim was to propose a genome association analysis for growth curves in pigs based on NMM as well as to compare it with the traditional two-step method. In addition, we also aimed to identify the nearest candidate genes related to significant SNP (single nucleotide polymorphism) markers. The NMM presented a higher number of significant SNPs for adult weight (A) and maturity rate (K), and provided a direct way to test SNP significance simultaneously for both the A and K parameters. Furthermore, all significant SNPs from the two-step method were also reported in the NMM analysis. The ontology of the three candidate genes (SH3BGRL2, MAPK14, and MYL9) derived from significant SNPs (simultaneously affecting A and K) allows us to make inferences with regards to their contribution to the pig growth process in the population studied
    corecore