925 research outputs found
A Specific N = 2 Supersymmetric Quantum Mechanical Model: Supervariable Approach
By exploiting the supersymmetric invariant restrictions on the chiral and
anti-chiral supervariables, we derive the off-shell nilpotent symmetry
transformations for a specific (0 + 1)-dimensional N = 2 supersymmetric quantum
mechanical model which is considered on a (1, 2)-dimensional supermanifold
(parametrized by a bosonic variable t and a pair of Grassmannian variables
(\theta, \bar\theta). We also provide the geometrical meaning to the symmetry
transformations. Finally, we show that this specific N = 2 SUSY quantum
mechanical model is a model for Hodge theory.Comment: LaTeX File, 13 Pages, Minor Modifications, Advances in High Energy
Physics, 2017, 1403937 (2017
Scaleup and hydrodynamics study of gas-solid spouted beds
A thorough understanding of the complex flow structure of gas-solid spouted bed is crucial for design, scale-up and performance. Advanced gas-solid optical probes were developed and used to evaluate different hydrodynamic parameters of spouted beds. These optical probes measure solids concentration, velocity and their time series fluctuations. Since solids concentration needs to be converted to solids holdup through calibration, for meaningful interpretation of results, a novel calibration method was proposed (which is inexpensive and reliable compared to the current reported methods) and validated in the present study. The reported dimensionless groups approach of spouted bed scale-up was assessed and was found that the two different spouted beds were not hydrodynamically similar. Hence, a new scale-up methodology based on maintaining similar or close radial profiles of gas holdup was proposed, assessed and validated. CFD was used after it was validated as an enabling tool to facilitate the implementation of the newly developed scale-up methodology by identifying the new conditions for maintaining radial profiles of gas holdup while scaling up. It can also be implemented to quantify the effect of various variables on their hydrodynamic parameters. Gamma Ray Densitometry (GRD), a non-invasive radioisotope based technique, was developed and demonstrated to montior [sic]on-line the conditions for the scale-up, flow regime and spouted beds operation. The solids holdup in spout region increases with axial height due to movement of solids from the annulus region. However, solids velocity in the spout region decreases with axial height. In the annulus region the solids move downward as a loose packed bed and the solids velocity and holdup do not change with axial height. Using factorial design of experiments it was found that solids density, static bed height, particle diameter, superficial gas velocity and gas inlet diameter had significant effect on the identification of spout diameter. Flow regimes in spouted bed were determined with the help of optical probes, pressure transducers and GRD. It was found that the range of stable spouting regime is higher in 0.152 m beds and the range of stable spouting decreases in the 0.076 m beds. The newly developed non-invasive radioisotope technique (GRD) was able to successfully identify different flow regimes and their transition velocities besides scale-up conditions and operation --Abstract, page iii
Development of trade unionism in India
Thesis (M.B.A.)--Boston Universit
Recommended from our members
Interplay between Mechanics, Electronics, and Energetics in Atomic-Scale Junctions
The physical properties of materials at the nanoscale are controlled to a large extent by their interfaces. While much knowledge has been acquired about the properties of material in the bulk, there are many new and interesting phenomena at the interfaces that remain to be better understood. This is especially true at the scale of their constituent building blocks - atoms and molecules. Studying materials at this intricate level is a necessity at this point in time because electronic devices are rapidly approaching the limits of what was once thought possible, both in terms of their miniaturization as well as our ability to design their behavior. In this thesis I present our explorations of the interplay between mechanical properties, electronic transport and binding energetics of single atomic contacts and single-molecule junctions. Experimentally, we use a customized conducting atomic force microscope (AFM) that simultaneously measures the current and force across atomic-scale junctions. We use this instrument to study single atomic contacts of gold and silver and single-molecule junctions formed in the gap between two gold metallic point contacts, with molecules with a variety of backbones and chemical linker groups. Combined with density functional theory based simulations and analytical modeling, these experiments provide insight into the correlations between mechanics and electronic structure at the atomic level.
In carrying out these experimental studies, we repeatedly form and pull apart nanoscale junctions between a metallized AFM cantilever tip and a metal-coated substrate. The force and conductance of the contact are simultaneously measured as each junction evolves through a series of atomic-scale rearrangements and bond rupture events, frequently resulting in single atomic contacts before rupturing completely. The AFM is particularly optimized to achieve high force resolution with stiff probes that are necessary to create and measure forces across atomic-size junctions that are otherwise difficult to fabricate using conventional lithographic techniques. In addition to the instrumentation, we have developed new algorithmic routines to perform statistical analyses of force data, with varying degrees of reliance on the conductance signatures.
The key results presented in this thesis include our measurements with gold metallic contacts, through which we are able to rigorously characterize the stiffness and maximum forces sustained by gold single atomic contacts and many different gold-molecule-gold single-molecule junctions. In our experiments with silver metallic contacts we use statistical correlations in conductance to distinguish between pristine and oxygen-contaminated silver single atomic contacts. This allows us to separately obtain mechanical information for each of these structural motifs. The independently measured force data also provides new insights about atomic-scale junctions that are not possible to obtain through conductance measurements alone. Using a systematically designed set of molecules, we are able to demonstrate that quantum interference is not quenched in single-molecule junctions even at room temperature and ambient conditions. We have also been successful in conducting one of the first quantitative measurements of van der Waals forces at the metal-molecule interface at the single-molecule level. Finally, towards the end of this thesis, we present a general analytical framework to quantitatively reconstruct the binding energy curves of atomic-scale junctions directly from experiments, thereby unifying all of our mechanical measurements. I conclude with a summary of the work presented in this thesis, and an outlook for potential future studies that could be guided by this work
Improved Dielectric Properties of Epoxy Nano Composites
Epoxy-based nanodielectrics with 2, 5 and 7Â wt.% of organically modified montmorillonite clay (oMMT) were prepared using high shear melt mixing technique. The interface of oMMT and epoxy of the nanodielectrics play a very important role in improving electrical, mechanical, thermal and wear properties. Therefore detailed study on the interfacial effects of filler-matrix has been investigated for understanding the chemical bonding using Fourier transform infrared spectroscopy (FTIR) and the cross linking between polymer and filler was studied using glass transition temperature (Tg) through differential scanning calorimetry (DSC). Further, positron annihilation lifetime spectroscopy (PALS) was used to determine precise and accurate value of free volume of the nanodielectrics. The interaction between the nanoparticles and polymer chains has a direct bearing on dielectric strength characteristics of the epoxy-oMMT nanocomposite system and accordingly, the ac dielectric strength of the nanodielectrics increases with the addition of oMMT into epoxy up to 5Â wt.% and further increase in filler loading (7Â wt.%) causes decrease in ac dielectric strength
Mechanical and Tribological Properties of Epoxy Nano Composites for High Voltage Applications
The tribological and mechanical properties of organomodified montmorillonite (oMMT)-incorporated Epoxy (Epoxy-oMMT), vinyl ester (vinyl ester-oMMT) and titanium dioxide (TiO2)-filled Epoxy (Epoxy-TiO2) nanocomposites are discussed below. Implications of introducing oMMT and TiO2 nanoparticles on mechanical and dry sliding wear properties are presented using micrographs of cast samples and through observations of wear affected surface of nanocomposites. Distribution of nanoparticles and their influence on properties are being emphasized for understanding the wear properties. The data on mechanical and tribological properties determined experimentally are compared with published literature. The main focus is to highlight the importance of nanofillers in the design of wear-resistant thermoset polymer composites. A detailed study of strength and moduli of Epoxy-oMMT, Epoxy-TiO2 and vinyl ester-oMMT nanocomposites was taken up as a part of the investigation. A discussion on density, hardness, tensile, flexural test data, and friction and wear of nanocomposites and analysis of results by comparison with prevalent theoretical models and published results of experiments are presented
- …