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ABSTRACT 

Interplay between mechanics, electronics, and energetics in atomic-scale junctions 

Sriharsha V. Aradhya 

The physical properties of materials at the nanoscale are controlled to a large extent by their 

interfaces. While much knowledge has been acquired about the properties of material in the bulk, 

there are many new and interesting phenomena at the interfaces that remain to be better 

understood. This is especially true at the scale of their constituent building blocks – atoms and 

molecules. Studying materials at this intricate level is a necessity at this point in time because 

electronic devices are rapidly approaching the limits of what was once thought possible, both in 

terms of their miniaturization as well as our ability to design their behavior. In this thesis I 

present our explorations of the interplay between mechanical properties, electronic transport and 

binding energetics of single atomic contacts and single-molecule junctions. Experimentally, we 

use a customized conducting atomic force microscope (AFM) that simultaneously measures the 

current and force across atomic-scale junctions. We use this instrument to study single atomic 

contacts of gold and silver and single-molecule junctions formed in the gap between two gold 

metallic point contacts, with molecules with a variety of backbones and chemical linker groups. 

Combined with density functional theory based simulations and analytical modeling, these 

experiments provide insight into the correlations between mechanics and electronic structure at 

the atomic level. 

In carrying out these experimental studies, we repeatedly form and pull apart nanoscale 

junctions between a metallized AFM cantilever tip and a metal-coated substrate. The force and 

conductance of the contact are simultaneously measured as each junction evolves through a 



 

 

series of atomic-scale rearrangements and bond rupture events, frequently resulting in single 

atomic contacts before rupturing completely. The AFM is particularly optimized to achieve high 

force resolution with stiff probes that are necessary to create and measure forces across atomic-

size junctions that are otherwise difficult to fabricate using conventional lithographic techniques. 

In addition to the instrumentation, we have developed new algorithmic routines to perform 

statistical analyses of force data, with varying degrees of reliance on the conductance signatures. 

The key results presented in this thesis include our measurements with gold metallic 

contacts, through which we are able to rigorously characterize the stiffness and maximum forces 

sustained by gold single atomic contacts and many different gold-molecule-gold single-molecule 

junctions. In our experiments with silver metallic contacts we use statistical correlations in 

conductance to distinguish between pristine and oxygen-contaminated silver single atomic 

contacts. This allows us to separately obtain mechanical information for each of these structural 

motifs. The independently measured force data also provides new insights about atomic-scale 

junctions that are not possible to obtain through conductance measurements alone. Using a 

systematically designed set of molecules, we are able to demonstrate that quantum interference is 

not quenched in single-molecule junctions even at room temperature and ambient conditions. We 

have also been successful in conducting one of the first quantitative measurements of van der 

Waals forces at the metal-molecule interface at the single-molecule level. Finally, towards the 

end of this thesis, we present a general analytical framework to quantitatively reconstruct the 

binding energy curves of atomic-scale junctions directly from experiments, thereby unifying all 

of our mechanical measurements. I conclude with a summary of the work presented in this 

thesis, and an outlook for potential future studies that could be guided by this work. 
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multiples of G0. A molecular signature can be clearly seen at 9 × 10
-4
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Inset: Sample conductance traces of molecules A1-A4. (c) 1D conductance histograms 
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-5
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Figure 3.2. Conductance measurements with COOH/SMe terminated aromatic molecules. 

1D conductance histograms (logarithmic bins, 100 bins/decade) of B1 in tetradecane 

(brown) and in water at pH 11 (light blue), and of B2 (orange) and B3 (violet) in 

tetradecane. Measurements were carried out at an applied bias of 450 mV. ........................ 46 

Figure 3.3. Force measurements with molecule B1. (a) 2D conductance-displacement 

histogram of B1 measured in the conducting AFM setup. Inset: Sample conductance trace, 

offset such that the drop from the molecular conductance plateau occurs at zero 

displacement. (b) 2D force-displacement histogram constructed from simultaneously 

measured force across B1 junctions. The statistically averaged force profile (black line) is 

overlaid. Inset: Sample force trace, measured simultaneously with the conductance trace 

shown in inset of Figure 3.3a. ............................................................................................... 49 

Figure 4.1. Experimental setup and molecular structures. (a) Schematic of AFM apparatus 

and (b) chemical structures of molecules 1-3. ...................................................................... 57 

Figure 4.2. Sample experimentally measured traces. Sample traces of simultaneously 

measured conductance (red, left axis) and force (blue, right axis) for (a) Au-Au junctions (b) 

Au-1-Au and (c) Au-3-Au single molecule junctions. Downward arrows indicate the final 

force event identifying junction rupture. .............................................................................. 58 

Figure 4.3. Statistical analysis of conductance. Displacement-preserving 2D conductance 

histograms (a, b, c) for 1, 2 and 3, respectively and profiles of conductance before rupture 

(d). The histograms represent more than 85% of the 7000 measured traces which show a 

significant force event beyond Au rupture, in each case. The abrupt jump in conductance at 

the displacement origin (dashed vertical lines provided as a visual guide) for 1 and 2 shows 

that bond rupture coincides with conductance drops. Arrows indicate the most frequently 

measured conductance value from the conductance profiles of 1 and 2. .............................. 61 
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Figure 4.4. Statistical analysis of force. 2D force histogram for molecule 1 with the averaged 

force profile overlaid. Inset: Statistically averaged force profiles for molecular junctions of 

1, 2, and 3 in black, green and red, respectively. .................................................................. 61 

Figure 4.5. Theoretical calculations. DFT optimized structures and isosurface plots of the 

HOMO of (a) Au2-1, (b) Au2-2 and (c) Au2-3. ...................................................................... 65 

Figure 4.6. Conductance and step length histograms. (a) Histograms of conductance for all 

the measured traces for molecules 1-3. Solid lines present a log-log plot of linearly binned 

conductance histograms with bin size = 10
-5

 G0 and dashed lines present the logarithmically 

binned conductance histograms with 100 bins/decade. (b) Elongation length distributions 

for molecules 1-3, normalized by total number of traces (1-6788, 2-6332 and 3-5965) for 

each case (0.03 nm/bin). Gaussian fits to the histograms are overlaid. ................................ 67 

Figure 5.1. Simultaneous measurement of single molecule conductance and force. (a) 

Schematic representation of a BP junction formed between a gold coated AFM cantilever 

and a flat gold substrate. Experimentally measured conductance (upper panel) and 

corresponding simultaneously acquired force (lower panel) sample traces during junction 

elongation for clean Au (b), BP (c) and BPE (d) junctions. Shaded areas in upper panels 

represent high conductance molecular regimes. In lower panels, the shaded areas represent 

structural rearrangements within high conductance junctions that are clearly identified by 

abrupt force fluctuations (downward pointing arrows). Rupture force is the drop in force 

when the junction ruptures to an open junction, and stiffness is the slope of fitted lines. .... 73 

Figure 5.2. Rupture force and stiffness of single molecule junctions. Histograms of (a) 

rupture forces and (b) effective stiffness for BPL (shaded green; mean rupture force Frup= 

0.85 ± 0.01 nN, mean stiffness Kjunc = 6.7 ± 0.1 N/m, number of measurements represented 

N = 7763), BPEL (shaded red; Frup = 0.85 ± 0.01 nN, Kjunc = 8.2 ± 0.1 N/m, N = 501), Au 

(yellow; Frup = 1.50 ± 0.01 nN, Kjunc = 7.7 ± 0.3 N/m, N = 2346), BPH (green; Frup = 1.48 ± 

0.01 nN, Kjunc = 10.2 ± 0.2 N/m, N = 4118) and BPEH (red; Frup = 1.88 ± 0.02 nN, Kjunc = 

14.6 ± 0.2 N/m, N = 530) junctions. Dashed lines connecting the peaks of the distributions 

are provided as visual guides. ............................................................................................... 76 
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Figure 5.3. Structural rearrangements in high-conducting junctions. Conductance step 

length and rearrangement length distributions for (a) BPEH and (b) BPH junctions show that 

only a small fraction of junctions are comprised of a single stable structure during 

elongation (counts near zero rearrangement length). Dashed lines are Gaussian fits to the 

non-zero portions of rearrangement length distributions. ..................................................... 78 

Figure 5.4. Structural evolution during junction elongation. (a) Schematic of structural 

evolution pathways deduced from experimental observations. In addition to rupture, the 

high conductance junctions show structural rearrangement and switching to the low 

conductance structures. (b) Model structure suitable for DFT calculations in which the BP 

adopts a tilted configuration due to constraints of junction formation and in which 

significant contribution from dispersion interactions of the aromatic ring with the atomic-

scale roughness can be probed. (c) Upon elongation, a structural rearrangement event that 

retains the specific Au-N bond is accompanied by a large force drop. (d) Further elongation 

of the final stable structure results in the rupture of the Au-N bond. Calculated energies (e) 

and forces (f) with (red) and without (blue) inclusion of dispersion effects demonstrates the 

significant contributions from dispersion interactions. The electrode reference energy is 

taken to be the final electrode structure in (d). The binding energy relative to the initial 

electrode structure in (b) is 0.45 eV stronger giving an initial binding energy prior to 

rearrangement of 1.8 eV. ....................................................................................................... 79 

Figure 5.5. DFT adatom geometry calculations. (a) Relaxed structure near minimum energy 

for the adatom tip model. Energy (b) and force (b) versus elongation (zero taken from the 

minimum energy point) with three approximations: PBE, PBE+vdW (geometry 

optimization with PBE), and PBE+vdW (geometry optimization with PBE including vdW 

forces). .................................................................................................................................. 86 

Figure 5.6. Force and conductance data from control experiments. (A) Conductance 

histogram for BP, PP, BPE, and SP generated from over 6000 traces, using linear bins of 

width 10
-6

 G0. (B) Histogram of forces measured in the presence of SP for the G0 single 

atom contact (in yellow) and for the largest force event greater or equal to a preset threshold 

value of 0.3 nN (dashed line) measured beyond the G0 contact rupture. .............................. 87 
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Figure 6.1. Experimental setup and sample simultaneously measured conductance and 

force data. (a) Schematic of the experimental setup used for simultaneous force and 

conductance measurements. (b) Sample trace showing the evolution of conductance (red, 

left axis) and force (blue, right axis) for an Ag point contact as a function of junction 

elongation. The drop in force at the end of the conductance step corresponds to the rupture 

force, while the slope of the force trace over the conductance plateau is related to the 

stiffness of the junction. ........................................................................................................ 95 

Figure 6.2. One-dimensional and two-dimensional cross-correlation conductance 

histograms. (a) One-dimensional conductance histograms (linearly binned, bin size 0.001 

G0) constructed without any data selection for 10,000 Ag (grey) traces; Au (gold) histogram 

is shown for comparison. These traces were measured with the STM-BJ setup. The 

highlighted regions indicate conductance ranges associated with AgO-S (red), Ag-SAC 

(grey) and AgO-P (green). (b) 2D cross-correlation histogram constructed without data 

selection for Ag traces. The panels on the right are profiles along the dotted lines shown on 

the cross-correlation histogram, at 0.9 G0 and 1.3 G0, respectively. The scale bar indicates 

the color scale used for the correlation values: red - positive, blue – negative and white – 

zero correlation. The black contours are at ± 0.05. (c) One-dimensional conductance 

histograms constructed from selected traces that have at least 80 data points in the Ag-SAC 

(grey, 3904 traces), AgO-S (red, 3345 traces) and AgO-P (green, 2501 traces) conductance 

ranges, respectively. .............................................................................................................. 97 

Figure 6.3. Junction evolution and conductance histograms of selected traces. (a) Schematic 

illustration of the three bonding motifs representing a clean Ag single atomic contact (Ag-

SAC), Ag atomic contact with a series O bridge (AgO-S), Ag atomic contact with a parallel 

O bridge (AgO-P), and a ruptured junction. Arrows indicate the experimentally inferred 

structural evolution pathways. (b) One-dimensional conductance histograms constructed 

from selected AFM-BJ traces for Ag-SAC (grey, 955 traces), AgO-S (red, 355 traces), AgO-

P (dark green, 214 traces), and AgO-P to rupture (light green, 90 traces). ......................... 100 

Figure 6.4. Rupture force and junction stiffness histograms. (a) Histograms of rupture force 

and (b) stiffness for Ag-SAC (grey), AgO-S (red), AgO-P (dark green) and AgO-P to rupture 
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1 
 Introduction and motivation 

The idea of using individual molecules as active electronic components provided the impetus to 

develop a variety of experimental platforms to probe their electronic transport properties. Among 

these, single-molecule junctions in a metal-molecule-metal motif have contributed significantly 

to our fundamental understanding of the basic principles required to realize molecular scale 

electronic components. Going beyond electronic transport characterization, new approaches to 

investigate metal-molecule-metal junctions with multiple probes are needed to understand both 

the fundamental and applied aspects of mechanical, optical and thermoelectric properties at the 

atomic and molecular scales, as well as to demonstrate quantum phenomena like interference and 

manipulation of spins in single-molecule circuits that can herald new device concepts with no 

classical analogues. This thesis describes my efforts to use simultaneous measurements of force 

and conductance to explore the interrelations between mechanics, electronics and energetics at 

the atomic scale in single-atomic contacts and single-molecule junctions. 

 

 Contents of this chapter are adapted from a review article: S. V. Aradhya and L. Venkataraman, 

Nature Nanotechnology, 2013. 8(6): p. 399-410. 
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Stimulated by the initial proposal that molecules could be used as the functional building 

blocks in electronic devices[1], researchers around the world have been probing transport 

phenomena at the single-molecule level both experimentally and theoretically[2-11]. Recent 

experimental advances include the demonstration of conductance switching[12-16], 

rectification[17-21], and illustrations on how quantum interference effects[22-26] play a critical 

role in the electronic properties of single metal-molecule-metal junctions. The focus of these 

experiments has been to both provide a fundamental understanding of transport phenomena in 

nano-scale devices as well as to demonstrate functionality from chemistry in single molecule 

junctions. Although to date there are no ‘molecular electronics’ devices manufactured 

commercially, fundamental research in this area has advanced significantly. 

Specifically, the drive to create functional molecular devices has pushed the frontiers of 

both measurement capabilities and our fundamental understanding of varied physical phenomena 

at the single-molecule level, including mechanics, thermoelectrics, optoelectronics and 

spintronics in addition to electronic transport characterizations. Metal-molecule-metal junctions 

thus represent a powerful template for understanding and controlling these physical and chemical 

properties at the atomic and molecular length scales. In this realm, molecular devices differ from 

devices based on quantum dots as the latter do not generally consist of systems where the 

structure is defined with atomic precision. Combined with the vast toolkit afforded by rational 

molecular design[22], these techniques hold a significant promise towards the development of 

actual devices that can transduce a variety of physical stimuli, beyond their proposed utility as 

electronic elements[23]. Together, these varied investigations underscore the importance of 

single molecule junctions in current and future research aimed at understanding and controlling a 

variety of physical interactions at the atomic and molecular length scale. 
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Figure 1.1. Schematic representation of an atomic-

scale metallic junction and a molecular junction. 
Electronic transport through these junctions can be 

quantified through the application of a bias voltage 

(V) and measuring the resulting current (I) flowing 

through the junction. Chemical linkers are typically 

needed to bind the molecule to the metallic 

electrodes. Spheres represent atoms: yellow - Au, 

grey - C, white-H, blue - N. 

1.1 Electronic transport and quantum interference in atomic-size junctions 

Atomic-scale junctions have proven to be fundamental tools for investigating quantum 

mechanical aspects of electronic transport [24]. Figure 1.1a,b show schematic illustrations of 

atomic-scale metallic and single-molecule 

junctions, respectively, consisting of a 

metallic ‘source’ and ‘drain’ electrodes on 

either side of a single or a few metallic 

atoms or molecules. The conductance (G) 

can be quantified by applying a bias 

voltage (V) between the source and drain 

electrodes, and measuring the current (I) 

that flows through the junction as a result 

of this bias: 

 /G I V  Eq. 1-1 

The electronic transport in the atomic-scale region is in the ballistic transport regime, i.e., 

the length of the conducting region is smaller than the mean free path as well as the phase 

relaxation length of the conducting electrons in the material. In this scenario, the transport can be 

thought of as arising from transmission of electrons from one electrode to the other[25]. Under a 

small applied bias (Vdc), the conductance is given by the Landauer-Buttiker formula: 

 2

0
0

2
iV

V

dI e
G

dV h





    
Eq. 1-2 
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Figure 1.2. Electronic transport in a single-

molecule junction. (a) The energy level diagram 

illustrates the presence of the highest occupied 

(HOMO) and lowest unoccupied (LUMO) molecular 

orbitals that modulate the electronic transport 

between the source and drain electrodes. (b) The 

transmission function  

where ‘e’ is the charge of an electron, ‘h’ is the Planck’s constant and  is the transmission (the 

probability for an electron to tunnel from the source to the drain electrode). The summation is 

carried out over ‘i’ transmission channels that contribute to conductance at a specified energy, 

namely the Fermi energy. Specifically, for a one-atom wide wire with a single fully transmitting 

channel ( = 1), the conductance is G0=2e
2
/h (≈ 77.5 S ≈ [12.9 k]

-1
), the quantum of 

conductance. 

In the case of a single-molecule junction, the conduction typically occurs through non-

resonant coherent transport mechanism, where the alignment and broadening of the molecular 

orbitals becomes critical[26]. Figure 1.2a shows a schematic energy level diagram for a single 

molecule junction, depicting the case when the highest occupied molecular orbital (HOMO) is 

closer to the Fermi level of the metallic 

electrodes than the lowest unoccupied 

molecular orbital (LUMO). If in addition, 

the HOMO and LUMO are far from the 

Fermi energy (EF) of the metallic 

electrodes, transport is not resonant, and 

the conductance of the single-molecule 

junctions is typically less than the 

quantum of conductance at small bias 

values. Figure 1.2b schematically shows 

the transmission in such an idealized 

junction as a function of energy. The conductance at small bias voltages can simply be evaluated 

as the transmission probability at the Fermi energy, (EF). Therefore, measurement of the 
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conductance probes an important aspect of the quantum mechanical electronic transport in these 

atomic-size junctions. Experimentally, conductance measurements are typically performed using 

scanning tunneling microscopes (STM) and conducting atomic force microscopes (AFM), or 

through specially microfabricated structures[27]. The STM and AFM based methods provide two 

distinct advantages: a) nanometer-sized gaps are easier to achieve using STM/AFM, and b) 

thousands of individual junctions can be measured during the course of an experiment to 

statistically capture inevitable microscopic variations in the atomic-scale structure of the 

junctions. 

Additional complexities in the electronic transport properties of atomic-scale junctions 

are introduced by one of the quintessential quantum mechanical phenomenon - quantum 

interference - that arises due to the wave nature of the electrons when the device length scale 

becomes comparable to the electronic phase coherence length. Although this length scale criteria 

is already satisfied by mesoscale devices[28], experiments at the molecular level are not merely a 

simple extension of such measurements down to the atomic scale; instead, they provide new 

insights and methods towards controlling charge transport at the level of the wavefunction 

through chemical design and, potentially, through electrical control. A prime example is the 

dramatic lowering of the conductance (Figure 1.3) of a cross-conjugated (or a meta-terminated) 

molecule when compared with the linearly conjugated (or para-terminated) analogue, as 

predicted theoretically[29, 30]. Formally, the reduced conductance of cross-conjugated molecular 

junctions is due to an anti-resonance in the junction transmission function[31], i.e., 

( ) 0FE E   . Controlling the position of this anti-resonance, relative to the electrode Fermi 

level could open up a pathway to create a quantum-interference-controlled molecular switch with 

a potentially large on-off ratio[32-35]. It has also been proposed that it might be possible to could 
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Figure 1.3. Chemical structure and quantum 

interference. Subtle chemical differences such as (a) 

para- versus (b) meta- terminations of the chemical 

linkers in a molecule (benzene diamine in this 

example) can drastically alter the conductance of the 

single-molecule junction due to destructive quantum 

interference. 

toggle between a conjugated and cross-

conjugated molecular junction through 

chemically or conformationally induced 

changes[33, 36]. 

The characteristic signature for 

destructive interference in molecular 

junctions is the anti-resonance in the 

transmission probability through the 

junction; this can, in principle, be probed 

by measuring the differential conductance 

of the junction as a function of applied 

bias voltage. Although this has not been achieved to date in a single-molecule junction where the 

conductance signal-to-noise can be quite small, Guédon et al. were able to show evidence for a 

transmission anti-resonance in a junction composed of about 100 molecules[37]. They used a 

conducting AFM technique[38] to measure the differential conductance of molecular junctions in 

a series of anthraquinone derivatives that were either cross-conjugated or linearly conjugated. 

They observe that the conductance of the cross-conjugated molecular junction was two orders of 

magnitude lower than that of the linearly conjugated one, even though the difference in their 

HOMO and LUMO energies was almost the same. Furthermore, the differential conductance 

measured through the cross-conjugated system showed clear evidence for an anti-resonance, with 

a sharp dip in the differential conductance close to zero-bias. Although these devices could not 

be gated electrically in these experiments, the results show that a shift in molecular anti-

resonance in such a system by ~0.5 V would yield a two-order of magnitude increase in 
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Figure 1.4. Simultaneous 

measurement of force and 

in atomic-size junctions. 
Force provides independent 

information about junction 

structure and evolution. 

conductance. The fact that discrete energy levels in a molecular junction allow for interference 

effects to be preserved even at high temperatures is technologically important. The ability to 

control interference effects encoded in the chemical structure of a molecule could enable novel 

functionalities that reliably operate at room temperature. 

1.2 The need for mechanical measurements and a brief overview of 

experimental techniques 

Measurements of electronic properties of nanoscale and molecular junctions do not, in 

general, provide direct structural information about the junction. One of the early techniques to 

directly image at the atomic resolution while measuring electronic transport was demonstrated by 

Ohnishi et al. for monoatomic Au wires[39]. However this technique has not proved feasible for 

investigating metal-molecule-metal junctions with carbon-based organic molecules. 

Simultaneous mechanical and electronic measurements (Figure 1.4) provide an alternate method 

to address questions relating to the structure of atomic-size 

junctions[24]. Specifically, the measurements of forces across 

single metal-molecule-metal junctions and of metal point-

contacts provide independent mechanical information, which can 

be used to: 1) relate junction structure to conductance, 2) quantify 

bonding at the molecular scale, and 3) provide a mechanical 

‘knob’ that can be used to control transport through nanoscale 

devices. The first simultaneous measurement of force and 

conductance in nanoscale junctions were carried out for Au point-

contacts by Rubio et al.[40], who showed that abrupt changes in 
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force across the junction are correlated with quantized changes in its conductance, 

unambiguously demonstrating the structural basis for the observed conductance quantization. 

These initial experiments relied on the so-called static mode of AFM force spectroscopy, 

where the force on the cantilever is monitored as a function of junction elongation. In this 

method the deflection of the AFM cantilever is directly related to the force on the junction by 

Hooke’s law (Force = cantilever stiffness × cantilever deflection). In contrast, dynamic mode 

AFM force spectroscopy makes use of the frequency shift of an AFM cantilever under forced 

near-resonance oscillation to detect changes in the cantilever stiffness due to its interaction with 

the sample; this frequency shift can then be related to the gradient of the tip/sample interaction 

force. In particular, the ‘q-Plus’ configuration[41] utilizes a very stiff tuning fork as a force 

sensor, thereby enabling high resolution measurements of atomic-size junctions. The basic 

advantage of this approach is that frequency-domain measurement of high-Q resonators is 

significantly easier to carry out with high precision. This technique has recently enabled studies 

of single atomic metallic contacts[42, 43], as well as various molecules adsorbed on metallic 

surfaces[44-47]. However, in addition to experimental complexity of this technique, recovering 

the junction force from frequency shifts, especially in the presence of dissipation and dynamic 

structural changes during junction elongation experiments, still remains challenging[48]. 

The feasibility of extending the static mode AFM technique from metal point contacts to 

ambient measurements of force and conductance across single-molecule junctions was 

demonstrated by Tao et al.[49], analogous to their STM based break-junction scheme for 

conductance measurements[8]. In this approach, single-molecule junctions are formed between 

an Au-metal substrate and an Au-coated cantilever in an environment of molecules. 

Measurements of current through the junction under an applied bias determine conductance, 
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while simultaneous measurements of cantilever deflection relate to the force applied across the 

junction. Although measurements of current through such junctions are easily accomplished 

using standard commercial instrumentation, measurements of forces with high resolution are not 

straightforward. This is because a rather stiff cantilever (with typical spring constant of ~50 N/m) 

is typically required in order to break the Au-point contact that is first formed between the tip 

and substrate, before the molecular junctions are created. The force resolution is then limited by 

the smallest deflection of the cantilever that can be measured. With a custom-designed 

conducting AFM we have achieved a cantilever displacement resolution of ~2 pm (cf. Au atomic 

diameter ~280 pm) using an optical detection scheme, allowing the AFM force noise floor to be 

as low as 0.1 nN even with these stiff cantilevers. The details of our experimental setup have 

previously been presented elsewhere[50]. 

In most of the experiments mentioned thus far, the measured forces were typically used as 

a secondary probe of junction properties, instead relying on the junction conductance as the 

primary signature for the formation of the junction. However, as is the case in large biological 

molecules[51, 52], forces measured across single-molecule junctions can also provide the 

primary signature, thereby making it possible to characterize non-conducting molecules that 

nonetheless do form junctions. This is especially important in the study of single-molecule 

junctions that exhibit destructive interference (as discussed in the previous section), where it is 

also necessary to distinguish between the effects of quantum interference from possible 

modulations induced by more mundane aspects such as contact mechanics[53]. In addition, 

molecules possess many internal degrees of motion (including vibrations and rotations) that can 

directly influence the electronic transport[54], and the measurement of forces with such 

molecules can open up new avenues for mechano-chemistry[55]. This potential of force 
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measurements in elucidating the fundamentals of electronic transport and binding interactions at 

the single-molecule level is prompting new activity in this area of research[56-58]. 

1.3 Scientific questions and outline of thesis 

The focus of this thesis is the study of the interplay between mechanics, electronics and 

energetics of atomic-scale junctions. As our main experimental tool, we use the custom-designed 

conducting AFM optimized for high force resolution to perform break-junction measurements. 

Following this introductory chapter which provided a brief background of experimental 

techniques and the motivations for simultaneous measurement of conductance and force in 

atomic-scale junctions, the subsequent chapters in this thesis are organized according to certain 

central questions or themes that I, along with our collaborators, have explored during the course 

of my doctoral research: 

Chapter 2 presents the experimental methods and several automated analysis procedures that 

were developed to extract and statistically compile information from large experimental 

datasets. Such techniques are important because the inevitable microscopic variability of the 

structure in these atomic-scale junctions necessitates the quantification of not only the mean 

value, but also the estimates of the variability in measured properties. The application of 

these techniques to obtain the rupture force of Au single atomic contacts and different Au-

molecule-Au single-molecule junctions with a variety of backbones and chemical linker 

groups are presented. The good agreement of these experimentally to density functional 

theory based calculations validates our experimental and analysis techniques. 

Chapter 3 summarizes our study of the electronic transport and stability of single-molecule 

junctions formed by carboxyl terminated alkane and aromatic molecules. Using a 
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combination of systematic conductance measurements and force measurements, we are able 

to identify the bonding mechanism responsible for the formation of these junctions. In 

addition to the intrinsic value, an understanding of the binding mechanism is an important 

step towards enabling the many attractive chemical modification opportunities afforded by 

the carboxyl group. 

Chapter 4 presents our study of a series of stilbene derivatives with methyl-sulfide linkers 

that systematically probed the occurrence of destructive interference phenomena in single-

molecule junctions. This study is one of the first to establish the robustness of destructive 

interference in electronic transport in single-molecule junctions, while simultaneously 

verifying that the mechanics of the junction is unaltered due to the similar S-Au donor-

acceptor binding at the contacts for each of the molecules in the series. 

Chapter 5 details mechanical measurements of single-molecule junctions of pyridine 

terminated molecules that goes beyond quantification of the junction rupture force. This 

study yielded one of the first experimental measurements of van der Waals forces at the 

single-molecule level that was also corroborated with state-of-the-art density functional 

theory calculations. 

Chapter 6 presents the quantification of rupture forces in silver single-atomic contacts at 

room temperature in ambient conditions. We use a conductance cross-correlation analysis 

technique to separately analyze pristine Ag single-atomic contacts as well as point contacts 

with oxygen atomic impurities in series and parallel with the Ag atoms. Utilizing 

complementary information from force and conductance, we demonstrate the correlation of 

conductance with the structural evolution at the atomic scale. 
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Chapter 7 presents a new analytical method to reconstruct quantitative binding energy 

curves of atomic point contacts and single-molecule junctions directly from experimental 

measurements, using a simplified model for their mechanics. Comparing the results to 

density functional theory calculations, we find striking agreement for each of the cases 

considered. Combined with the demonstrated feasibility of single-molecule experiments, this 

technique provides an approach to significantly expand the versatility of atomic force 

microscopy towards quantifying binding energetics at the atomic scale – even at room 

temperature, and in ambient or in the presence of solvents. 

Chapter 8 summarizes the conclusions and provides an outlook for future investigations that 

can build upon the work presented in this thesis. 
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2 
 Experimental procedures and analysis techniques 

One of the challenges in the study of single atomic contacts and single-molecule junctions is to 

form nanometer size contacts and gaps with metallic electrodes. Conventional microfabrication 

techniques are unable to achieve such gaps, and require special methods such as controlled 

electromigration which have low device yields. In our experimental work we use the ‘break 

junction’ technique employing either a scanning tunneling microscope (STM) or a conducting 

atomic force microscope (AFM), where junctions are repeatedly formed and broken thousands of 

times in the course of a typical experiment. This chapter describes the experimental protocols 

used to carry out these measurements, and the analysis techniques we have developed to perform 

statistical analyses of large datasets. 

 

 

 Parts of this chapter appear in: 1) M. Frei, S.V. Aradhya, M.S. Hybertsen, and L. Venkataraman, J. 

Amer. Chem. Soc., 2012. 134(9): p. 4003-6, 2) M. Frei, S.V. Aradhya, M. Koentopp, M.S. Hybertsen, 

and L. Venkataraman, Nano Lett., 2011. 11(4): p. 1518-23, 3) S.V. Aradhya, M. Frei, M.S. Hybertsen, 

and L. Venkataraman, Nature Mater., 2012. 11(10): p. 872-6, and 4) S.V. Aradhya, J.S. Meisner, M. 

Krikorian, S. Ahn, R. Parameswaran, M.L. Steigerwald, C. Nuckolls, and L. Venkataraman, Nano 

Lett., 2012. 12(3): p. 1643-7.  
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2.1 STM- and AFM-based break junction setups 

We utilize the break-junction technique to perform experimental studies of atomic-scale 

contacts[1, 2]. In this technique, two metallic electrodes are repeatedly brought into and out of 

contact with each other. Upon complete rupture of the junction, a gap on the order of ~1 

nanometer opens up in the case of gold electrodes due to atomic relaxation[3]. This gap is ideally 

suited to measure single-molecule conductance with molecules that are terminated with chemical 

groups, thereby spontaneously forming junctions by binding to the Au electrodes on either ends. 

The STM-based break junction (STM-BJ) setup[1, 4] (Figure 2.1a) consists of a freshly cut Au 

wire held in a home-built tip holder, that is brought into and out of contact with an Au substrate. 

The substrates are mica sheets with ~100 nm of evaporated gold (99.9999% pure, from Alfa 

Aesar). Before every experiment, we clean the cantilever and substrate in a UV/ozone cleaner. 

Whereas the Au wire used in STM experiments represents, effectively, an infinitely stiff 

cantilever, AFM break junction (AFM-BJ, Figure 2.1b) measurements necessitate the use of 

 

Figure 2.1. Schematic representations of the experimental setups. (a) STM-BJ setup for conductance-

only measurements where a freshly cleaved Au wire forms one of the electrodes, while an Au-coated mica 

substrate is used as the second electrode. (b) AFM-BJ setup for simultaneous of force and conductance 

measurements, where an Au-coated AFM micro-cantilever acts as one of the electrodes. 
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finite stiffness probes[2, 5]. In terms of the force resolution in an optical beam deflection type 

AFM setup in the static mode AFM force spectroscopy, it is best to use the softest possible 

probes[6], since the deflection of the cantilever /x F k   , where F is the change in force and 

K is the stiffness. However, we need stiff probes to perform break-junction measurements for 

two reasons: 1) To rupture Au-Au bonds in the experiment, the AFM cantilever needs to have a 

minimum stiffness corresponding to the stiffness of an Au-Au bond (~ 8N/m)[7], and 2) The 

thermal noise density (nth)of an AFM cantilever has the form: 

 

2
2 2 2

0
0 0

2 1

1 ( / ) / ( )

B
th

k T
n

f kQ f f f f Q


   

 
Eq. 2-1 

where, kB is the Boltzmann constant, T is the temperature, f0 is the resonant frequency, Q is the 

quality factor, and k is the spring constant of the cantilever and f is the frequency. Therefore, a 

stiffer cantilever with a high resonant frequency is required for the lowest force noise. In 

addition, previous molecular dynamics based theoretical simulations and experimental results by 

other researchers have also indicated that a stiff cantilever is better suited to measure the 

mechanics of atomic-scale junctions[7-9]. With these considerations, we therefore use 

commercial AFM cantilevers (NanoAndMore, Inc) of ~ 50 N/m stiffness after coating with 35 

nm of Cr and 120 nm of gold (99.9999% pure, from Alfa Aesar) through thermal evaporation 

(Edwards BOC/Auto 306). We have optimized our conducting AFM setup (modified from a 

commercial Veeco Multimode AFM) to obtain high force resolution. The modifications to the 

experimental setup include customized optics to maximize signal-to-noise ratio, using a 

temperature controlled superluminescent diode as an incoherent light source and many 
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modifications to the AFM to decouple it from external mechanical and acoustic noise sources. 

The details of the experimental setup have been presented elsewhere[10]. 

In both the STM- and AFM-based break junction setup, we apply a bias voltage (Vdc, 

typically 25 mV but higher for low conducting molecules) across the Au tip and substrate and the 

current flowing across the junction is measured using a current amplifier (Kiethly 428). We use a 

calibrated single-axis piezoelectric positioner (Mad City Labs) which is calibrated by the 

manufacturer as well as independently by us using laser interference measurements to be 

accurate within 5%. We use a high resolution 24-bit data acquisition card (National Instruments, 

PXI-4461) operating at upwards of 40,000 samples/sec to collect the current data and to control 

the piezo. Finally, we collect the force data using a 16-bit data acquisition card (National 

Instruments PXI-6251) after low-pass filtering at 10 kHz followed by summing and amplifying 

using commercial data processing modules (SRS). 

2.2 AFM cantilever calibrations 

We obtain force data by measuring the deflection of a focused laser beam off the back of 

the AFM cantilever. This beam is collected on a quadrant detector and the voltage signal is 

converted into a force reading in two steps: 

1) We obtain the voltage signal during a 200 nm motion of the cantilever in hard contact with the 

substrate. Since we know the piezo displacement, we can calculate the conversion factor for the 

voltage signal to cantilever displacement. 

2) We measure the power spectrum of the free cantilever displacement. The area using a 

Lorentzian fit to the thermal power spectrum provides a measure of the mean displacement 
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2x   of the oscillator. From the equipartition theorem, the spring constant/stiffness of the 

cantilever is calculated as[6]: 

 2/cant Bk k T x    Eq. 2-2 

 

2.3 Measurement protocols 

We start each measurement by contacting the tip (STM Au wire or Au-coated AFM 

cantilever) to the substrate to achieve a conductance larger than 5 G0 (G0 = 2 e
2
/h, the quantum 

of conductance). This ensures that we sample a wide variety of junction structures in our 

measurements. From this position, we pull the substrate away from the AFM tip at the rate of 18 

nm/s. During this retraction, we either measure the current (STM-BJ) or we simultaneously 

measure the current and force (AFM-BJ). Knowing the applied bias voltage (V) and the current 

(I), the conductance (G=I/V) of the junction is monitored as a function of piezo displacement. 

Figure 2.2 shows sample simultaneously measured conductance (red) and force (blue) traces 

with a clean Au substrate using the AFM-BJ setup. Experiments with the STM-BJ are 

qualitatively identical, however, only the conductance can be measured in that case. The 

conductance trace shows steps/plateaus in conductance close to integer multiples of G0, 

highlighting the quantized conductance in Au atomic-size junctions described by the Landauer-

Buttiker formalism (Eq. 1–2). Beyond the 1 G0 plateau corresponding to the Au single atomic 

point contact, the junction ruptures and conductance falls to the noise levels of the instrument 

(inset of Figure 2.2). At the same time well-correlated saw-tooth features are observed in the 

force data: conductance plateaus correspond to ramps in force, indicating tensile loading of the 
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junction and drops in conductance correspond to drops in force, indicating junction 

rearrangement or bond rupture events in the junction. 

Molecules of interest can be deposited onto the substrate either by evaporating small 

quantities of the molecule, or by deposition of a drop of dilute (~ 1 mMol) solution of the 

molecule dissolved in a suitable solvent (typically 1,2,4-trichlorobenzene). In the presence of 

molecules with chemical linkers that bind to the Au electrodes, additional conductance features 

are observed below 1 G0. Figure 2.3 shows a sample simultaneously measured conductance 

(plotted on a logarithmic axis, red) and force data (blue) in the presence of 1,4 -

bis(methylsulfide) butane (C4SMe), which is a saturated four-atom carbon chain with 

methylsulfide (-S-CH3) linkers[11] (chemical structure shown in the inset). The force data shows 

multiple saw-tooth features during the molecular conductance plateau. After the molecular 

junction is extended for ~ 0.3 nm, the junction ruptures completely and no further features are 

observed in the force and conductance within the instrumental noise. 

 

Figure 2.2. Sample simultaneously measured conductance and force trace for Au point contact. 
Conductance (red, left axis) and force (blue, right axis) data show the evolution and rupture of an Au 

point contact as a function of the displacement of the substrate. Inset: conductance data plotted on a 

logarithmic axis to make the conductance noise level visible. 
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2.4 One-dimensional histograms for conductance analysis 

The sample traces shown in Figure 2.2 and Figure 2.3 represent particular junction 

evolution scenarios. When the experiment is repeated a different junction evolution might occur, 

due to inevitable microscopic differences at the atomic-scale. Therefore, in all our experiments, 

we measure thousands of individual traces and perform analyses of these large datasets to obtain 

statistically meaningful results. One of the most basic and powerful statistical analysis tools for 

conductance that has been widely used in atomic point contact and single-molecule experiments 

is the 1D conductance histogram[12]. In this technique, the conductance values are divided into 

either equally spaced bins, resulting in ‘linearly binned histograms’ or divided into 

logarithmically spaced bind, resulting in ‘logarithmically binned histograms’. All the analyses 

are performed using custom programs written in the Wavemetrics Igor Pro software. Figure 

2.4a,b shows 1D histograms constructed from 3000 traces each with clean Au and with C4SMe 

evaporated on the Au substrate using linear binning and logarithmic binning, respectively. Peaks 

 

Figure 2.3. Sample simultaneously measured conductance and force trace for a single-molecule 

junction. In addition to conductance (red, left axis) plateaus near integers of G0, additional conductance 

plateau is seen at ~ 10
-3

 G0 due to the formation of a single-molecule junction with C4SMe molecule. 

Force data (blue, right axis) show a clear saw-tooth features over the molecular conductance plateau. 

Inset: chemical structure of the molecule (grey – carbon, yellow – sulfur, and white – hydrogen. 
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at quantized conductance values appear in the case of Au, where as a clear peak corresponding to 

the molecule appears at ~10
-3

 G0 when C4SMe is present on the substrate. The logarithmic 

binning accentuates low conductance values, as seen in Figure 2.4b. Gaussian or Lorentzian 

lineshapes can then be fit to the molecular conductance features to extract the most frequently 

occurring conductance from either the linearly or logarithmically binned histograms. 

 

2.5 Two-dimensional histograms for conductance and force analysis 

While the 1D conductance histograms provide a way to obtain a statistical value for the 

conductance features, the displacement information present in the experimentally acquired 

conductance data is lost in the histograms. To extract statistically significant characteristics from 

the evolution of junction conductance and force as a function of sample displacement, we 

construct two-dimensional (2D) histograms from the conductance and force traces, setting the 

origin of the displacement axis at the point where either the 1 G0 conductance step or the 

 

Figure 2.4. 1D conductance histograms. (a) Linearly binned (conductance bin size of 10
-4

 G0) 

histograms for clean Au (yellow) and C4SMe (red). Note the logarithmic plotting for both axis. (b) 

Logarithmically binned (100 bins/decade) histograms for clean Au (yellow) and C4SMe (red). The 

arrows indicate the most frequently occuring conductance value corresponding to Au-C4SMe-Au single-

molecule junctions. 
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molecular conductance step breaks. This well-defined position on the x-axis is determined 

individually for each trace, using an automated algorithm. A fraction of the traces do not show a 

conductance plateau at G0 or a plateau corresponding to a molecular junction. It is likely that the 

absence of the G0 or the molecular conductance plateau means that a single-atom point contact or 

a single molecule junction was not formed during that particular measurement. Therefore, these 

traces are not used for further analysis, as they do not contain the bond rupture event of interest. 

The statistical occurrence of the junction of interest varies with the case, but a statistically 

significant and unbiased data set results in each case. Each data point on the digitized 

conductance (force) trace is thus assigned a conductance (force) coordinate (along the y-axis) 

and a position coordinate (along the x-axis). Two-dimensional conductance histograms are then 

generated without further analysis. For the two-dimensional force histogram, we also set the 

force at the new zero-displacement position to zero force by subtracting an offset from the entire 

force trace. This realigns all force traces to a common point such that each force and 

displacement value was now determined relative to the value at the end of the conductance step 

in each trace. After this realignment, thousands of force traces were added to generate a two-

dimensional force histogram. We then obtain a statistically averaged force profile from this 

histogram by locating the peaks of Gaussian fits to vertical sections at every displacement bin. 

Figure 2.5a,b shows two-dimensional conductance and force histograms, respectively, 

constructed from over 31,000 traces measured without any molecules present and using 20 

different tip/sample pairs. Insets to Figure 2.5a,b show a sample conductance and simultaneously 

acquired force trace, respectively, to illustrate where the zero in displacement is set. The 

conductance is plotted on a logarithmic axis, whereas the force and the position (x-) axes use 
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linear bins in these plots. Negative displacements are events that occur before the end of the 1 G0 

plateau while positive corresponds to data beyond the end of the plateau. These histograms are 

generated from traces where the G0 step can be identified with our automated algorithm. 

Approximately 80% (31,033 out of 39,000) of the measured traces exhibit a clearly identifiable 1 

G0 step and are included. Figure 2.5a shows clear peaks at integer multiples of G0 occurring at 

negative displacements, and almost no counts at positive displacements, since zero displacement 

is set at the point when the G0 contact breaks. 

The 2D force histogram, created from the same set of traces, (Figure 2.5b) shows a trend in 

the force that is increasing with increasing displacement, just prior to the clear sharp drop at zero 

displacement. The force required to break the G0 contact can be determined from the magnitude 

 

Figure 2.5. Statistical two-dimensional histograms for Au. (a) Two-dimensional conductance 

histogram constructed from over 31,000 traces. All traces are aligned such that the end of the plateau at 1 

G0 is at zero along the displacement axis. A large number of counts is visible at integer multiples of G0. 

Inset: Sample conductance trace aligned to zero displacement at the end of the 1 G0 plateau. (b) Two-

dimensional force histogram constructed from simultaneously acquired force traces. The force profile 

(black curve) is overlaid and shows a clear jump at zero displacement. The rupture force of 1.4 nN for a 

single atomic contact is determined by extrapolating the fit of the force profile (dotted line). Inset: Force 

trace acquired simultaneously with conductance trace shown in the inset to panel (a), aligned at the 1 G0 

break. 
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Figure 2.6. Experimental measurement scheme and chemical structures explored. On the left is an 

illustration of the stretching and breaking of a single molecule junction between the AFM cantilever and 

the substrate. Chemical structure of the linker groups and molecular backbones measured in this study are 

shown along with arrows of size proportional to their respective measured rupture forces. 

of this drop. The force profile is effectively an averaged force trace for the single atom contact 

rupture event. It shows a clearly defined drop of 1.4 ± 0.2 nN at zero displacement, as illustrated 

in Figure 2.5b, corresponding to the breaking force of a single Au-Au bond. This value is in good 

agreement with published experimental and theoretical results[7, 9, 13], validating our 2D 

analysis method. We note here that this result is from a statistically significant data set of about 

31,000 traces, providing a robust and unbiased determination of the Au single atomic contact 

rupture force. 

We have also extended the 2D conductance and force histogram technique to a variety of 

single molecule junctions (Figure 2.6) consisting of different chemical backbones[14] and linker 

groups[15, 16]. Here we present a brief summary of the measured rupture forces and 

conductances measured for six molecules representing (a) four different molecular backbones 

(butane, hexane, benzene and bipyridine), each with a nitrogen termination, and (b) three linker 

groups (Amine [NH2], thiomethyl [SMe], and diphenylphosphine [DPP]), each attached to 
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similar saturated backbones (of 4-6 carbon atoms). The chemical names (and abbreviations used 

in the following discussion) for the molecules are: (a) 1,4 diaminobenzene (BDA), (b) 4,4’ 

bipyridine (BP), (c) 1,6-hexanediamine (C6A), (d) 1,4-butanediamine (C4A) (e) 1,4-

bis(methylsulfide) butane (C4SMe), and (f) 1,5 bis-(diphenyl-phosphino)pentane (C5DPP). 

Each compound is obtained from commercial sources, and used without further purification. 

Conductance is determined by measuring current through the junction at a constant applied bias 

of 25 mV for all molecules, except 75 mV for C6A and for BP. The molecules are deposited 

onto the Au substrate either by evaporation or by addition of a dilute concentration of molecule 

in the solvent 1,2,4-tricholorobenzene (TCB). Both the conductance and force results are 

independent of the deposition method. Over 10,000 individual conductance and simultaneously 

acquired force traces are collected with multiple tip/sample pairs for each molecule and are 

analyzed to generate 2D histograms in order to characterize their molecular breaking force. 

As an example, Figure 2.7a shows a 2D conductance histogram for C4A where the origin 

in the displacement axis is set at the end of the molecular conductance step. Logarithmic bins for 

the conductance (y) axis and linear bins for the displacement (x) axis are chosen for image 

clarity. The measured traces that show a molecular conductance step were selected using an 

automated algorithm for both conductance and force analysis. Insets of Figure 2.7a,b show 

conductance and simultaneous force data for one particular junction breaking event, out of the 

over 3500 individual measurements used to construct the 2D histograms. A clear feature is seen 

in the conductance histogram at 9 × 10
-4

 G0, which gives us the most probable conductance of an 

Au-C4A-Au junction. This peak extends over a displacement of about 0.15 nm, indicating that 

molecular junctions can be elongated over this distance prior to the final rupture. From Figure 

2.7b, we obtain the most frequently occurring rupture force for C4A to be 0.6 nN. 
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Each of these six molecules shows characteristic conductance features due to the selective 

binding of the N, SMe or DPP linker to undercoordinated Au atoms[4, 11]. Particularly, BP 

shows two characteristic conductance peaks (a ‘high-G’ and a ‘low-G’ peak) that occur at distinct 

junction elongation distances[17-19]. In this work, we probe the rupture from the low-G peak, 

which corresponds to a geometry where the molecule bridges the two Au electrodes 

vertically[19]. We note that the conductance peak positions (corresponding to the most 

frequently measured conductance, see Table 2.1) are in good agreement with previously 

published data collected in solution using the STM-based break junction technique[11, 19]. 

Furthermore, the clear conductance signature seen for all these molecules allows us to measure 

specific single Au-molecule-Au junction rupture events unambiguously. In each case, except the 

thiolate (SH) linker, it is also known that the binding mechanism is the (N, P or S)-Au donor-

acceptor interaction[4, 11, 19-22]. In Table 2.1, we show bond rupture forces determined from 

 
Figure 2.7. Statistical two-dimensional histograms for C4A. (a) Two-dimensional conductance 

histogram of C4A constructed from over 3,500 traces with a molecular conductance step. Features 

representing a sequence of Au contacts appear at integer multiples of G0. A molecular signature can be 

clearly seen at 9 × 10
-4

 G0. Inset: A sample conductance trace showing a G0 and molecular plateau with 

zero displacement set to the end of the molecular plateau. (b) The two-dimensional force histogram for 

C4A is constructed from the simultaneously acquired force traces of the same set of traces used to 

construct the conductance histogram. The average force profile (black curve) shows a clear drop at zero-

displacement of ~0.6 nN. Inset: Simultaneously acquired force trace aligned after the molecular step. 
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2D force histograms for all the six molecules. We see that in all these cases, the Au-molecule-Au 

junction ruptures at a force smaller than that of an Au-Au bond, indicating that rupture occurs at 

the respective donor-acceptor bonds consistent with earlier work[2, 11, 22]. Specifically in the 

amine linked molecules, by comparing the measured rupture forces for C4A and C6A we see 

first that for these two alkanes with 4 and 6 carbons in the backbone, the rupture forces are very 

similar. Additionally, we see that the force required to break the N-Au bond in the conjugated 

molecule, BDA, is considerably smaller than in C4A and C6A, which are fully saturated. 

Table 2.1. Comparison of most frequently measured conductance and rupture force for molecular 

junctions with a nitrogen termination having different backbones (rows 1-4) and saturated backbones 

having different linker groups (rows 4-6). 

# Molecule Chemical Structure 
Conductance 

(G0) 

Force 

(nN) 

1 

1,4 

benzenediamine 

(BDA)  

6×10
-3

 0.5 

2 
4,4’ bipyridine 

(BP) 

 

1×10
-4

 0.8 

3 

1,6 

hexanediamine 

(C6A)  
1×10

-4
 0.6 

4 
1,4 butanediamine 

(C4A) 
 

9×10
-4

 0.6 

5 

1,4-

bis(methylsulfide) 

butane (C4SMe)  
1×10

-3
 0.7 

6 

1,5 bis-(diphenyl-

phosphino)-

pentane (C5DPP) 

 

7×10
-4

 0.8 
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2.6 Trace-by-trace analysis of conductance and force 

In addition to 2D histograms, it is desirable to also obtain detailed statistical distributions 

of rupture force, stiffness and conductance on a trace-by-trace basis in order to estimate both the 

most frequently occurring values as well as their variance in our experiments. While this strategy 

is straight-forward, it is challenging to implement in the analyses of experimental datasets due to 

the presence of noise and the large variability in the properties of interest from junction to 

junction. We have overcome these challenges in developing trace-by-trace analysis techniques 

due to two significant developments. First, having a good force resolution in the AFM-BJ setup 

is a crucial factor in revealing subtle structural rearrangements that is not obviously to glean 

from conductance data alone. For instance, in Figure 2.3 several force saw-tooth features are 

seen over the course of a single molecular conductance plateau. So far, such features were not 

accounted for in experimental studies present in the literature. Second, in addition to the 

information that can be gained about structural rearrangements, these force signatures also need 

to be taken into account to obtain reliable junction stiffness values, which contains critical 

mechanical information about the junction. Therefore, robust automated algorithms needed to be 

developed in order to take into account the structural rearrangement signatures in the 

experimental data. 

To achieve this, we have created an algorithm (see Figure 2.8) that identifies structural 

rearrangement signatures in the force data and use it to compile statistically relevant datasets of 

rupture force, stiffness and rearrangement lengths. We start by finding the displacement where 

the conductance plateau of interest ruptures to noise levels. This point is then used as a datum for 

further force analysis. All significant force events before this point are identified by a subroutine 

that locates sharp and large force fluctuations. This procedure consists of separately analyzing 
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high and low pass filtered force data, and finding the locations at which sharp (large high 

frequency components) and large (large low frequency components) events occur coincidentally. 

Every force fluctuation above 0.25 nN, (~1.5× standard deviation of instrument noise) is 

identified in this manner. To be included in the results, we require that: a) the conductance 

beyond the plateau of interest drops to conductance noise levels to ensure that we are analyzing a 

junction rupture event, and b) the final load-rupture saw-tooth have at least 100 datapoints, to 

ensure meaningful fitting required in analyzing the stiffness. Each individual measurement 

satisfying these two criteria are included in the results and without any further selection. This 

ensures that there is no selection based on rupture force, stiffness or rearrangement length. 

To demonstrate this analysis, we consider again the case of C4SMe single-molecule 

junction. In the conductance data (highlighted in Figure 2.9a, red, left axis), a clear molecular 

plateau around 10
-3

 G0 is seen, and the rupture of the molecular junction is identified at a 

displacement of ~3.5 nm. The force data (highlighted in Figure 2.9b, blue, right axis) shows two 

fluctuations that are identified by the algorithm to be significantly larger than the instrument 

 

Figure 2.8. Flow chart explaining the algorithm to obtain rupture force and stiffness. This algorithm 

is geared towards identifying and accounting for subtle structural rearrangement events that are not 

observable through the analysis of the conductance data alone. 
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Figure 2.9. Sample C4SMe measurement demonstrating the trace-by-trace analysis algorithm. 
Simultaneously measured conductance (red, left axis) and force (blue, right axis) trace. (a) The 

conductance drop after the plateau of interest (here a C4SMe molecular conductance plateau) is located 

(shown by the X mark). (b) The algorithm then identifies significant force fluctuations beyond the 

experimental noise limit. These force events are not accounted for when extracting the stiffness of the 

junction using linear fitting to the force data (dashed green line). The rupture force is the drop in the force 

at the end of the conductance plateau. 

 

noise (green downward arrows). Correlated with the conductance drop, a sharp drop is also 

observed in the force data. This drop in force (F) is the junction rupture force. Finally, the force 

data between the rupture location and the force event that immediately precedes the rupture is 

fitted with a linear fit to obtain the slope (kraw) of the force ramp. The stiffness of the junction 

(kjunc) is then obtained after correcting for AFM spring constant (kcant ~50 nN) in series: 

 ( ) / ( )junc cant raw cant rawk k k k k    Eq. 2-3 

For each experimental dataset, we obtain the rupture force for clean gold samples, and 

perform a Gaussian fit to a histogram compiled from this force data. The combined errors in the 

measurements of the voltage-to-displacement factor and cantilever stiffness as well as known 

variability in detector sensitivity[23] manifest themselves in the mean value of the Au-Au 

rupture force[7]. We have rigorously characterized this value by compiling more than 10,000 
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individual Au rupture events (out of 39,000 measurements performed with multiple tips, 

substrates and calibrations) using the same algorithm described above. Figure 2.10 shows the 

histogram of these forces along with a Gaussian fit centered at 1.5 ± 0.02 nN (fitted mean ± 

standard error). With day-to-day changes in 

AFM tips, substrates and calibrations, we 

observe that the mean rupture force of Au G0 

is Gaussian distributed, but the mean varies by 

up to a maximum of ±20% of 1.5 nN. 

Therefore, we correct for these day-to-day 

calibration errors across datasets by using a 

single correction factor per dataset, such that 

the mean Au G0 rupture force is set to the 

reference value of 1.5 nN. The absence of this 

correction does not affect the observed trends, 

and its influence on the quantitative results is reduced due to averaging of multiple datasets. We 

note that the rupture force value obtained from this large dataset trace-by-trace analysis is 1.5 

nN, whereas the value obtained from 2D analysis of similarly large dataset in Section 2.5 was 1.4 

nN. This discrepancy (which is nonetheless within the experimental uncertainty of ± 0.2 nN of 

the 2D value) likely arises from the slight ambiguity in extracting the drop in the force of the 

statistically averaged force profile (Figure 2.5). While the most frequently measured rupture 

force is obtained on a trace-by-trace basis as the most frequently occurring value of the 

difference in two force values (i.e., force values immediately before (Fmax) and after (F0) 

 

Figure 2.10. Rupture force distribution for Au-

Au bond rupture. Histogram of Au G0 rupture 

forces (compiled from more than 10,000 

individual measurements) can be fitted to a 

Gaussian profile, and the most frequently 

measured value obtained is 1.5 ± 0.02 nN. 
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rupture), the rupture force is obtained from the 2D force histogram is the average difference in 

these two values. These two values need not be equal in general: 

 
max 0 max 0F F F F        Eq. 2-4 

2.7 Force analysis in the case of low- or non-conducting molecular junctions 

A distinct advantage of single-molecule measurements using AFM-BJ is that the force data 

is collected independent of the conductance. Therefore, the force data can potentially be used as 

a complementary probe of junction evolution irrespective of the conductance. This ability is 

exploited in Chapter 4, in the study of molecules which do not show a measurable conductance 

due to destructive quantum interference in their electronic transport. The algorithm developed for 

this analysis performs three sequential operations on every individual simultaneously measured 

conductance and force traces: (1) identifying the location of the end of the 1 G0 conductance 

plateau, (2) analyzing the force data beyond this point to find the last force event within 1 nm of 

this point and (3) setting the origin of conductance and force traces at this location and creating 

2D histograms of force and conductance. Figure 2.11 demonstrates application of this technique 

on a sample individual elongation measurement of (E)-3,3′-di(methylthio)stilbene molecular 

junction that does not show an identifiable molecular conductance plateau, but the force events 

beyond the Au point contact rupture provide a clear indication of the presence of the molecule in 

the junction. The conductance drop from 1 G0 is easily identified since the conductance 

decreases by more than two orders of magnitude upon the rupture of Au point-contacts. 

Analyzing the force data to identify significant events is carried out by the following procedure. 

First, the force trace F (Figure 2.11, blue trace) is transformed to a trace F* (Figure 2.11, green 

trace) where every data point F*[p] with index p is defined as: 
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10 50avg , avg ,F* [p] F[p] F[p]   Eq. 2-5 

where, 

 
1 p p n

avg ,n

i p n j p

F [p] F[i] F[j]
n



  

 
  

 
   Eq. 2-6 

 

F* shows clearly defined spikes at the positions where there are large changes in the force, 

and is much less sensitive to random noise compared to the original data, due to the averaging. 

We note that due to high frequency noise in the raw force trace, a simple numerical derivative 

cannot reliably identify the location of these sharp drops in force. We classify every spike of F* 

that corresponds to a change in force greater than 0.3 nN (which is ~ 2× the experimental noise 

level of the force data) as a significant force event, and use this threshold to consistently analyze 

all data collected here for all three molecule types. F* is used to identify all the significant force 

events within a 1 nm elongation beyond the 1 G0 point-contact rupture. Figure 2.11 demonstrates 

 

 

Figure 2.11. Sample trace demonstrating force-based analysis technique in a (E)-3,3’-di-

(methylthio)stilbene single-molecule junction. The rupture from 1 G0 is shown by the red ×. Dashed 

lines are provided as visual guides to the force events identified through F*, the auxiliary force trace 

(green) within a 1 nm displacement from the 1 G0 rupture location. 
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the high sensitivity of F* to significant force events which are heuristically identified in the force 

data. It also demonstrates the insensitivity of F* towards high frequency noise in the force data. 

The algorithm then identifies the last force event as the rupture of the molecular junction, 

irrespective of the conductance. Once identified, this molecular rupture location can be used as 

the origin to construct the displacement-preserving conductance and force 2D histogram centered 

at the rupture location of the molecular junction, as described before in Section 2.5, even though 

there is no identifiable molecular rupture location obtainable from the conductance data. 
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3 
 Electronic transport and mechanical stability of carboxyl linked 

single-molecule junctions 

Nanoscale interfacial physical properties become a dominant factor in determining its various 

functionalities in single-molecule junctions. Mechanical information at these length scales can 

help address a multitude of properties regarding the interplay between structure, mechanics and 

electronics of these junctions. Here we characterize electron transport across Au-molecule-Au 

junctions of heterogeneous carboxyl and methylsulfide terminated saturated and conjugated 

molecules and find that the stability of the carboxyl binding is comparable to that of the 

methylsulfide linker. Further, we find that the binding occurs through the formation of COO¯-Au 

bond. By establishing reliable, in-situ junction formation, these experiments provide a new 

approach to probe electronic properties of carboxyl groups at the single molecule level. 

The work presented in this chapter was performed in collaboration with Dr. Seokhoon Ahn, Dr. 

Michael Steigerwald and members of Prof. Colin Nuckolls’ group. 

 This chapter is adapted from: S. Ahn, S.V. Aradhya, R.S. Klausen, B. Capozzi, X. Roy, M.L. 

Steigerwald, C. Nuckolls, and L. Venkataraman, Phys Chem Chem Phys, 2012. 14(40): p. 13841-5. 
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The development of molecular-scale electronics requires an understanding of the 

relationship between the structure and charge transport properties of single molecules[1-3]. A 

molecular junction consists of a molecule bound between two electrodes via terminal functional 

groups that provide both the electronic and mechanical links[4-7]. The measured conductance of 

the molecule depends not only on the molecular backbone structure, but also on the choices of 

the electrode metal and the chemical link group. Specifically, the link group directly affects the 

type and strength of the metal-molecule interaction, in addition to details such as steric effects. 

Together, the backbone and the linking groups control both the junction mechanics as well as the 

electronic level alignment between the metal and molecule[8, 9]. Many different chemical links 

have been used experimentally for attaching molecules to Au electrodes including thiols[5, 8, 10, 

11], amines[12-14], methyl sulfides[6, 15], fullerenes[16], paracyclophanes[17] , phosphines[6, 

18], cyanides[19], and covalent gold-carbon links[20, 21]. The links dictate the metal-molecule 

contact geometry, whose variation can result in significant changes in conductance from junction 

to junction, particularly if thiol links are used[11, 22, 23]. Although electronic measurements of 

alkanes terminated with carboxylic acid groups have been carried out[13], electronic and 

mechanical properties of conjugated systems have not been reported so far, despite the attractive 

chemical modification opportunities afforded by the COOH group[24, 25]. In part, this can be 

attributed to the practical challenges arising from the low solubility of dicarboxylic acids in most 

non-polar organic solvents as well as non-trivial adsorption behavior on gold surfaces[3]. 

Here, we overcome these challenges by studying compounds with one carboxylic link and 

one methyl sulfide (SMe) link; the SMe group has reliable molecular junction formation 

properties[6, 15]. We measure electronic and mechanical properties of saturated and conjugated 

molecules terminated with both COOH and SMe linkers. Through conductance measurements 



42 

 

across Au-molecule-Au junctions, we find that both SMe and COOH terminations are 

comparable in terms of their electronics. In addition, we find evidence of binding of the COOH 

group to gold through a carboxylate-gold (COO
−
-Au) bond. Using an atomic force microscope, 

we also carry out single-molecule bond rupture measurements[26, 27]. We find that these 

asymmetrically terminated molecular junctions rupture at 0.6 ± 0.1 nN. This force is comparable 

to the bond rupture force of di-SMe terminated molecules[27, 28], which indicates that the bond 

between the acid group and gold electrodes is also mechanically comparable to the Au-SMe 

bond. 

3.1 Systematic trends in conductance for saturated backbones 

The molecules used in this study, (methylthio)acetic acid (A1) (Aldrich), 3-

(methylthio)propionic acid (A2) (Alfa Aesar), 4-(methylsulfanyl)butanoic acid (A3) (Ryan 

Scientific), 4-(methylsulfanyl)pentanoic acid (A4) (Ryan Scientific), and 4-(methylthio)benzoic 

acid (B1) (Aldrich) were purchased and used without further purification. 1,4-

bis(methylthio)benzene (B2) was synthesized by the procedure of Engman et al.[29, 30]. Methyl 

4-(methylthio)benzoate (B3) was synthesized from 4-(methylthio)benzoic acid by the procedure 

of Ikeda et al.[31]. 

Molecular conductance measurements are carried out using a modified scanning tunneling 

microscope[5] where a gold tip (cleaved Au wire, 0.25 mm diameter, 99.998%, Alfa Aesar) and a 

gold coated mica substrate are brought in and out of contact in a 0.1 to 1 mM tetradecane 

solution of the target molecule (Figure 3.1a). The current between the tip and substrate is 

measured at an applied bias of 450 mV as a function of the relative tip/sample displacement to 

yield a conductance (current/voltage) versus displacement trace. When a clean Au contact is 
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Figure 3.1. Conductance measurements of COOH/SMe terminated alkane molecules. (a) Schematic 

illustration of the Au-molecule-Au junction. (b) A 2D conductance-displacement histogram of compiled 

from over 10,000 individual A3 traces measured at a bias of 450 mV. Inset: Sample conductance traces of 

molecules A1-A4. (c) 1D conductance histograms (linear bins, bin-size of 10
-4

 G0 for A1 and A2, and 10
-5

 

G0 for A3 and A4). Inset: Semi-logarithmic plot of the variation of the most frequently measured 

conductance with the number of carbon atoms in the molecule (• = SMe/COOH linkers, × = SMe/SMe 

linkers). 

 

pulled and broken, the conductance traces show steps at integral multiples of G0 (G0 = 2e
2
/h, the 

quantum of conductance), indicating that the cross-section of the contact is reduced down to that 

of a few and, eventually, a single atomic chain of Au[32]. When the Au single atom chain is 

broken in the absence of molecules, the conductance either decreases exponentially with the 

electrode displacement due to tunneling across the gap between the two Au electrodes, or it drops 

from G0 to below our experimental detection limit due to the broken ends of the electrode 

snapping back as the contacts relax[33, 34]. When measurements are carried out with a series of 

alkanes with 1-4 methylene groups terminated by a COOH group and a SMe group (A1-A4), 

conductance traces show additional plateaus at characteristic values lower than 1 G0 (see Figure 

3.1b inset). These plateaus are seen if the molecules present in the solution bridge the gap 

between the electrodes, with the terminal groups forming a bond to the Au electrodes, as 

illustrated in Figure 3.1a. 
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Figure 3.1b shows a two-dimensional conductance histogram[16, 35] created from 10,000 

measurements with A3, where all traces are aligned along the displacement axis at the point 

where the single Au atom contact breaks. We see clear peaks at negative displacements with a 

conductance around 1, 2 and 3 G0, characteristic of Au quantum point contacts. In addition, at 

positive displacements, we see a distinct conductance signature at around 10
-3

 G0 indicating that 

molecular junctions are formed immediately following the rupture of the Au single-atom contact. 

This two-dimensional histogram also shows that these molecular conductance features extend to 

about 0.2 nm, in good agreement with previous measurements of alkanes terminated with amine 

or methyl sulfide groups[34]. The well-defined distribution of the conductance plateaus indicate 

that the carboxylic group binds selectively to under-coordinated Au atoms, again analogous to 

amine and methyl sulfide groups[6, 12]. These results together demonstrate that stable single 

molecule junctions can be reliably formed in-situ using carboxylic acid linkages. 

The variation of conductance with the length of the molecule can reveal information about 

the electronic structure of the junction[2, 36, 37]. We quantify the trends in conductance 

systematically as a function of the number of methylene groups in the backbone by creating one-

dimensional conductance histograms of all measured traces for each compound (Figure 3.1c). By 

fitting the molecular conductance feature in these histograms to a Lorentzian function, we 

determine the location of the peak in these histograms for each molecule. The peak positions 

correspond to the most frequently measured conductance of the respective molecule, and are 

observed to decrease with increasing molecular backbone length. These conductance values are 

plotted on a semi-logarithmic scale against the number of carbon atoms in each molecule in the 

inset of Figure 3.1c. We note that the number of carbon atoms counted does not include the 

carbon atom in the COOH group, therefore n=1 for A1 and so on. From a linear fit to this data, 
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we find that the conductance for this series decreases exponentially with increasing molecular 

length ( 1 n

cG R e   ), where G is the conductance, Rc is the contact resistance, n is the number of 

carbon atoms in the chain and β is the decay constant. We obtain a decay constant, β, of 0.9 ± 

0.1/methylene group in good agreement with past measurements on a series of alkane molecules 

with a variety of terminal groups[5, 6, 11, 13, 38, 39]. The contact resistance (obtained by 

extrapolating this fit to zero carbon atoms) is 600 kΩ. For comparison, we include conductance 

values determined from measurements of alkanes terminated with SMe groups on both ends (×, 

inset of Figure 3.1c)[6]. Interestingly, we find that the conductance and conductance decay 

constant of this An series is almost the same as that of the SMe-(CH2)n-SMe compounds (which 

have a decay constant of 0.9 ± 0.1/methylene) if we consider that the An series has an extra 

carbon atom within the linker which does not participate in the bonding. Based on this 

consideration, the contact resistance of the bonding group becomes 240 kΩ (~ 600 × e
-0.9

 kΩ), 

where the contact resistance of SMe-(CH2)n-SMe molecules is 270 kΩ[6]. From this, we infer 

that the electronic coupling between a COOH group and the Au electrode is similar to that of the 

SMe-Au linkage. 

3.2 Conductance of aromatic backbones 

Having established the reliable formation of molecular junctions with COOH linked alkane 

molecules, we now turn to aromatic systems that have long been known for enhanced electron 

transfer through solution-based experiments and Marcus-type electron transfer models[40]. We 

focus on the prototypical conjugated molecule, 4-(methylthio)benzoic acid (B1), with SMe and 

COOH links on opposite ends and measured in a tetradecane solution. The conductance 

histogram, generated using logarithmic bins, is shown in Figure 3.2 (brown trace). We see a 
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Figure 3.2. Conductance measurements with 

COOH/SMe terminated aromatic molecules. 1D 

conductance histograms (logarithmic bins, 100 

bins/decade) of B1 in tetradecane (brown) and in 

water at pH 11 (light blue), and of B2 (orange) and 

B3 (violet) in tetradecane. Measurements were 

carried out at an applied bias of 450 mV. 

broad molecular conductance feature, 

indicating that the conductance of B1 

changes from junction to junction, and 

could depend on the orientation of the 

molecule in the junction[30]. Crucially, we 

find that the most frequently measured 

conductance for B1 is 3× higher than the 

saturated A4 molecule, despite its 

comparable length. This enhanced 

conductance clearly demonstrates the 

more efficient electron transport through 

the delocalized π-system, at the single 

molecule level. However, in comparison to 

its symmetrically linked analogue, B2 

(orange trace in Figure 3.2), we note that the conductance of B1 is smaller, indicating perhaps a 

reduced coupling due to the additional C atom between the phenyl ring and Au electrode. 

3.3 Binding mechanism and mechanical stability of carboxyl linkers 

We exploit the chemical modifications afforded by the carboxyl group to probe the binding 

mechanism between the acid group and the Au electrode. First, we perform the experiment in the 

presence of water at a pH of 11 (NaOH base). An apiezon wax coated Au tip is used to minimize 

the ionic current between the tip and substrate in the presence of the basic solution[41]. At pH 

11, we see the clear molecular conductance feature at the same location (~1.3×10
-3

 G0) as the 

experiments performed in tetradecane (light blue trace in Figure 3.2). Considering the acidic 
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nature of B1 (pKa = 4.28), we expect the carboxyl group to be completely deprotonated at pH 11. 

Therefore, the absence of any changes in the conductance signature indicates that the molecule 

binds to the electrode through a COO
−
-Au bond[3, 13]. We also perform the experiment in an 

acidic solution (pH 1-3), but no identifiable conductance signature is observed. This could be due 

to the reduced solubility of B1 in the strongly acidic solution or due to the fact that B1 is not 

deprotonated in the low pH solution. To determine if the deprotonation is indeed necessary for 

bond formation, we perform conductance measurements of methyl 4-(methylthio)benzoate (B3), 

where the hydrogen of the carboxylic group is replaced with a methyl group. As indicated by 

Figure 3.2 (violet trace), we do not observe a clear conductance feature with B3. These 

measurements therefore indicate that the immobilized methyl group blocks the formation of 

molecular junctions, giving conclusive evidence for a COO
–
-Au binding mechanism. In addition, 

this result supports a binding mechanism based on COO
–
-Au bond through the negatively 

charged oxygen atoms, rather than C-Au interactions. This also provides the reason why the 

carbon atom of the carboxyl group appears to act like an additional atom in the tunneling 

equation for the alkane series, as discussed above. 

In order to test the bond strength between B1 and Au electrodes, we carry out simultaneous 

conductance and force measurements on single-molecule junctions following methods 

previously described in Frei et al.[26]. Briefly, we use a custom-built conductive atomic force 

microscope (AFM) and form single-molecule junctions between a gold-coated commercial AFM 

cantilever (NanoAndMore Inc) and a gold-on-mica substrate. Conductance is measured across 

the tip/sample junction at constant bias of 75 mV. The force is measured simultaneously by 

monitoring the deflection of a laser focused on the back of the cantilever. Figure 3.3a displays a 

sample conductance trace measured in a 1 mM tetradecane solution of B1, where we see the 
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characteristic conductance plateau around ~10
-3

 G0. Figure 3.3b reveals the simultaneously-

measured force trace having a characteristic saw tooth pattern that is attributed to reversible 

(elastic) and irreversible (plastic) deformations during conductance plateaus and drops[42]. The 

conductance and force trace shown in the insets of Figure 3.3 have been offset along the 

displacement axis so that the end of the molecular conductance plateau occurs at zero 

displacement. 

To determine, with statistical significance, the single-molecule junction rupture force, we 

collect thousands of simultaneous conductance and force traces and analyze this data by using a 

two-dimensional histogram technique, detailed in Chapter 2[26]. Briefly, the conductance traces 

are analyzed to select those that have a conductance plateau within the conductance range 

determined from the histogram shown in Figure 3.2, and by requiring a conductance drop of a 

factor of 5 immediately following the plateau. Although the molecular conductance features are 

easily recognizable, the short length of B1 molecule results in a relatively infrequent (~8%) 

formation of single-molecule junctions. These selected conductance traces and the 

simultaneously measured force traces are then overlaid after aligning each to a common point 

along the displacement axis (as shown in insets of Figure 3.3a,b). All force traces are also 

aligned along the force axis by adding a constant offset to the entire trace such that the force at 

the end of the conductance plateau is zero. Figure 3.3a,b show the 2D conductance and force 

histograms, respectively, presenting the statistical representation of all the selected traces. A 

statistically averaged rupture force is then determined from the profile of the two-dimensional 

force histogram (black overlaid trace in Figure 3.3b). The magnitude of the sharp drop in this 

profile at zero-displacement corresponds to the average bond rupture force. For measurements 

with clean gold, we have shown that the rupture force of a gold single-atomic junction is 1.4 ± 
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0.2 nN. Applying the same methodology to Au-B1-Au junctions, we obtain a rupture force of 0.6 

± 0.1 nN. This force is comparable to that required to rupture the Au-NH2 and Au-SMe bond[26, 

27], indicating that the COO
–
-Au binding strength is not very different from that of the SMe-Au 

donor-acceptor bond. 

 

In conclusion, we have experimentally probed the electronic transport through saturated 

and conjugated molecules with carboxyl linkages. We have shown that the carboxylic acid linker 

forms mechanically stable single-molecule junction, with a rupture force similar to other well-

characterized linkers.[26-28] Just as in the case of thiol linkers (SH), the hydrogen in the COOH 

linkers plays a critical role in its binding mechanism to Au electrodes. Taken together, these 

measurements establish the possibility of using COOH as a mechanically stable and 

electronically conducting linker group, and open up interesting avenues to a broad range of 

chemical modifications to tune interfacial electron transfer. 

 

Figure 3.3. Force measurements with molecule B1. (a) 2D conductance-displacement histogram of B1 

measured in the conducting AFM setup. Inset: Sample conductance trace, offset such that the drop from 

the molecular conductance plateau occurs at zero displacement. (b) 2D force-displacement histogram 

constructed from simultaneously measured force across B1 junctions. The statistically averaged force 

profile (black line) is overlaid. Inset: Sample force trace, measured simultaneously with the conductance 

trace shown in inset of Figure 3.3a. 
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4 
 Dissecting contact mechanics from conductance pathways 

in single-molecule junctions of stilbene derivatives 

Electronic factors in molecules such as quantum interference and cross-conjugation can lead to 

dramatic modulation and suppression of conductance in single-molecule junctions. Probing such 

effects at the single-molecule level requires simultaneous measurements of independent junction 

properties, as conductance alone cannot provide conclusive evidence of junction formation for 

molecules with low conductivity. Here, we study the mechanics of a set of stilbene derived 

single-molecule junctions by measuring the force across the junctions even when no clear low-

bias conductance is measured. Comparing the results from these molecules, our experiments 

provide the first direct systematic study of the interplay between contact mechanics and the 

distinctively quantum mechanical nature of electronic transport in single-molecule junctions. 

This work was performed in collaboration with Dr. Jeffrey Meisner and other members of Prof. 

Nuckolls’ group; DFT calculations were performed by Dr. Michael Steigerwald. 

 This chapter is adapted from: S.V. Aradhya, J.S. Meisner, M. Krikorian, S. Ahn, R. Parameswaran, 

M.L. Steigerwald, C. Nuckolls, and L. Venkataraman, Nano Lett., 2012. 12(3): p. 1643-7.  
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Understanding and controlling the electronic properties of molecular wires is 

fundamentally important for molecular electronics[1, 2]. The scanning tunneling microscope 

(STM) based break junction approach gives a deep insight into the structure-conductance 

relationship in single-molecule junctions because it provides a statistical interpretation over an 

ensemble of measurements[3-5]. However, in these studies only one physical property - the 

junction conductance - is measured. This limits the interpretation of the results in junctions 

where the conductance is either very small or ill-defined. Theory predicts that there will be large 

modulations in single molecule conductance for systems exhibiting quantum interference, such 

as variously substituted aromatic molecules and cross-conjugated molecular wires[6-12]. For 

example, theoretical calculations have predicted that a benzene ring bound to metal electrodes 

with linker groups at the 1 and 3 positions (meta to each other) should have a conductance that is 

five orders of magnitude lower than that of a 1,4-linked benzene[6]. To determine, from low-bias 

conductance measurements alone, whether such effects are present is difficult because the 

conductance of the meta-substituted molecules is often below the experimental noise limit of the 

instruments. At high biases, non-equilibrium effects, junction heating and inelastic processes 

cannot be ruled out[13-15]. Furthermore, a statistical approach is needed to demonstrate the 

robustness of interference phenomenon by rigorously accounting for experimental details such as 

junction formation probability, binding strength, junction-to-junction variation and junction 

structure. 

Here we overcome these critical challenges by simultaneously measuring force and 

conductance across single molecule junctions using a conducting atomic force microscope 

setup[16, 17]. We study three molecular backbones: 4,4’-di(methylthio)stilbene (1), 1,2-(bis(4-

methylthio)phenyl)ethane (2) and 3,3’-di(methylthio)stilbene (3). These molecules are chosen 
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since the longer stilbene backbones, rather than benzene backbones discussed above, form 

molecular junctions more frequently and the thiomethyl (SMe) terminal groups provide reliable 

mechanical and electrical contact to the Au electrodes[18, 19]. We exploit the high binding 

probabilities and reliable contact properties to acquire and analyze large datasets comprised of 

thousands of individual junctions to probe the robustness of interference effects, in each case. 

The para-positioned linker groups in 1 effectively couple across the π-system and provide a 

conducting single-molecule junction. In 2 the mechanical linkages between the metal and the 

molecule are the same as in 1, but conjugation is broken due to the saturated bridge, which 

results in lower junction conductance. In 3, the mechanical linkers are moved to the meta-

position but the conjugated bridge is retained, as in 1. There is no measurable single molecule 

conductance feature in 3. We use the simultaneously measured force data to independently obtain 

signatures of junction formation and rupture. We quantitatively determine the elongation length 

and rupture force for each of the three molecules, irrespective of their conductance. In contrast to 

the conductance, we find that the rupture force is insensitive to the linker group placement. We 

are able to demonstrate, for the first time, that the meta substituted 3 forms mechanically stable 

Au-molecule-Au junctions but does not show a measurable conductance, and theoretical 

calculations point to quantum mechanical interference as the origin of this behavior. These 

measurements enable us not only to investigate junctions of non-conducting molecules, but more 

generally allow us to deconvolute electronic effects from mechanical evolution in single-

molecule junctions. 

4.1 Experimental setup and measurements of force and conductance 

Simultaneous measurements of single-molecule conductance and force are carried out 

using a custom-built conductive atomic force microscope (AFM) which has been described in 
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Figure 4.1. Experimental setup and molecular structures. (a) Schematic of AFM apparatus and (b) 

chemical structures of molecules 1-3. 

 

detail previously[17] (see also Chapter 2). Molecular junctions are formed between an Au-coated 

AFM cantilever and an Au-on-mica substrate schematically represented in Figure 2.9a. 

Conductance is determined by measuring current through the junction at an applied bias of 75 

mV. Simultaneous measurements of cantilever deflection relate to the force applied across the 

junction. The AFM is operated in ambient conditions at room temperature. Dilute solutions (0.1 

mM) of the target molecules (1-3, Figure 2.9b) in 1,2,4-trichlorobenzene are deposited on the 

substrate. For each measurement, the tip is brought into contact with the substrate until a 

conductance greater than 5 G0 (G0 = 2e
2
/h, the quantum of conductance) is achieved, and then 

retracted at a constant velocity of 18 nm/s while both conductance and cantilever deflection are 

continuously recorded. During this elongation, the Au contact thins down to a single atom point 

contact, clearly identified by a conductance plateau of 1 G0. In the absence of molecules the Au 

contact ruptures to a broken junction when elongated further. However, in a solution of 

molecules, molecular junctions are frequently formed after the rupture of the 1 G0 plateau. 
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Figure 4.2. Sample experimentally measured traces. Sample traces of simultaneously measured 

conductance (red, left axis) and force (blue, right axis) for (a) Au-Au junctions (b) Au-1-Au and (c) Au-3-

Au single molecule junctions. Downward arrows indicate the final force event identifying junction 

rupture. 

 

Figure 4.2 displays simultaneously measured force and conductance traces obtained while 

breaking Au point contacts without molecules (Figure 4.2a) or with 1 and 3 (Figure 4.2b,c 

respectively). We see a stepwise decrease in conductance (red) while the simultaneously 

measured force (blue) has a characteristic saw-tooth pattern with alternating linear ramps (elastic 

loading) and abrupt drops (structural rearrangement or bond rupture) in force[17, 20]. After the 

rupture of the Au single-atom contact in the absence of molecules (identified by its characteristic 

1 G0 conductance plateau), no further features are seen in either conductance or force. The 

conductance drops below the measurable level (~10
-5

 G0), and the force stays constant because 

there is no more a load on the cantilever, as seen in Figure 4.2a. When an Au point contact is 

broken in the presence of 1 or 2, a single-molecule junction with a characteristic conductance 

feature is formed ~90 % of the time[18, 19].  This additional plateau is seen in the conductance 

traces immediately following the rupture of the Au contact, as illustrated in Figure 4.2b (red 

trace) for an individual measurement with 1. The simultaneously acquired force traces (blue) also 

show additional saw-tooth features. In this trace, we see that the 1 G0 ruptures at ~0.5 nm along 

the displacement axis and the molecular junction ruptures after an additional elongation of about 
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0.6 nm. Once this molecular junction has ruptured, no more conductance or force features are 

seen in measurements with 1 or 2. In contrast, measurements with 3 do not exhibit any well-

defined conductance plateau, however a majority of the measured traces show multiple force 

features after the rupture of the Au-contact as illustrated in Figure 4.2c. Such force features are 

similar in magnitude to those seen in measurements of 1 and 2. 

4.2 Statistical analyses without relying on molecular conductance features 

For each molecule (1-3) we analyze 7000 simultaneously measured conductance and 

force traces using an automated algorithm detailed in the Chapter 2, section 2.7. We use these 

large datasets to obtain statistically significant information because the atomic-scale structure 

varies from junction to junction. We begin by locating the displacement when the Au point 

contact ruptures in the conductance traces. This is the point in the trace when conductance drops 

below 1 G0. Focusing on the simultaneously acquired force trace, we analyze a 1 nm-long 

segment of this trace (~ S-S distance for the three molecules) beyond the 1 G0 rupture point to 

locate the final junction rupture event, i.e., the last abrupt force drop. The distance between the 1 

G0 rupture location and this final force event defines the molecular junction elongation length. 

For conducting molecules (Figure 4.2b), we observe that molecular junctions form immediately 

after the rupture of the Au point contacts and therefore junction elongation length is equivalent to 

the conductance plateau length which has been used in previous studies to characterize single-

molecule junction mechanics[16, 18, 21]. It is important to note that we are able to identify 

molecular junction rupture events through force data and do not require a well-defined 

conductance plateau to obtain the elongation length. 
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Two-dimensional conductance and force histograms are now generated using the location 

of the final force event as the origin along the displacement axis[18]. For conductance, individual 

traces are offset laterally such that this same rupture location is the origin of the displacement 

axis. The 2D conductance histograms have linear bins along the displacement axis (x-axis, 500 

bins/nm) and logarithmic bins along the conductance axis (y-axis, 200 bins/decade) [22]. For 

force data, individual traces are offset both laterally as above and vertically such that the force 

value at the origin is zero. The 2D force histograms have linear bins along displacement (x, 500 

bins/nm) and force (y, 12.5 bins/nN) axes. Every vertical section of this 2D force histogram is fit 

with a Gaussian and its peak is used to determine a statistically averaged force profile for the 

entire dataset[17]. Since there is no selection based on conductance, every trace with a 

significant force event after Au rupture (> 85% of measured traces in each case) is analyzed. 

In Figure 4.2b, we display an individual force and conductance measurement with 1. We 

see a clear conductance plateau after the rupture of Au point contacts. The simultaneously 

acquired force traces shows several saw-tooth features indicating multiple structural changes in 

the junction, ultimately rupturing after ~0.6 nm of elongation[23]. The final force event 

(downward arrow in Figure 4.2b) occurs at exactly the same displacement as the conductance 

drop. Figure 4.3a shows the 2D conductance histogram for 1 representing 6788 of the 7000 

individual traces for which a significant force event was found after 1 G0 rupture. Although only 

force data was used to identify and set the zero displacement at the molecular junction rupture 

point, we observe that the conductance also drops sharply to the instrument noise level at zero-

displacement, demonstrating the reliability of this force-based alignment procedure. A 

conductance profile of this histogram shows a clear peak at 1.3×10
-3

 G0 (Figure 4.3d, black 

trace), which compares well with the 1D conductance histograms created from all the measured 
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Figure 4.3. Statistical analysis of conductance. Displacement-preserving 2D conductance histograms (a, 

b, c) for 1, 2 and 3, respectively and profiles of conductance before rupture (d). The histograms represent 

more than 85% of the 7000 measured traces which show a significant force event beyond Au rupture, in 

each case. The abrupt jump in conductance at the displacement origin (dashed vertical lines provided as a 

visual guide) for 1 and 2 shows that bond rupture coincides with conductance drops. Arrows indicate the 

most frequently measured conductance value from the conductance profiles of 1 and 2. 

 

 

 

Figure 4.4. Statistical analysis of force. 2D force histogram for molecule 1 with the averaged force 

profile overlaid. Inset: Statistically averaged force profiles for molecular junctions of 1, 2, and 3 in black, 

green and red, respectively. 

traces (see Section 4.4). We see that the para-linked molecule 1 forms junctions with relatively 

high, well-defined conductance, as observed for other fully-conjugated molecular wires. The 2D 

force histogram created from the simultaneously acquired force traces is shown in Figure 4.4, 

along with the statistically averaged force profile. This force profile shows an abrupt drop of 0.5 

nN at zero displacement, corresponding to the force required to rupture this junction[17]. 
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Molecule 2 shows similar behavior in conductance and force. The 2D conductance 

histogram (Figure 4.3b, from 6332 traces), shows a clear conductance feature at a significantly 

lower value of 3.2×10
-5

 G0. This result is intuitively understood as arising from the lowered 

communication between the aromatic rings due to the ethane bridge at the center, even though 

the para-positions of the linkers is identical to 1. From the statistically averaged force profile 

(Inset, Figure 4.4, green trace), we find that these junctions also rupture at a force of 0.5 nN and 

show a loading and rupture behavior similar to 1. 

Qualitatively different behavior is found in junctions of 3. We do not see clear 

conductance plateaus in individual traces, as shown in Figure 4.2c. Individual force traces, 

however, do show saw-tooth signatures typical of junction structure evolution and bond rupture, 

and are analogous to force measurements of 1 and 2. This is representative of the loading and 

rupture event of the molecular junction in individual traces. The 2D conductance histogram 

(Figure 4.3c), constructed from all traces that show a clear bond rupture event in the force data, 

shows a broad conductance feature slightly above the noise level as seen in the profile in Figure 

4.3d (red trace). This can be ascribed to the small, but non-zero contribution to conductance from 

the sigma channel, through-space tunneling between the electrodes and possibly dispersive 

interactions between the molecular π-orbitals and the Au electrodes[9, 24]. The averaged force 

profile centered at the rupture event generated from 5965 traces is shown in the inset of Figure 

4.4 (red trace). Clearly, there are a statistically significant number of traces that have rupture 

events after the G0 plateau, a fraction similar to 1 and 2, which could not be identified by 

conductance data alone. The bond rupture force for these junctions is also 0.5 nN. Therefore, we 

conclude that single-molecule junctions of 3 are formed, but do not show clear conductance 

plateaus and have a significantly lower conductance, confirming the theoretical predictions of a 
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low conductance due to interference effects. It is important to note that the character of the 

conductance we observe for 3 is qualitatively very different from that seen in 1 or 2, as is further 

evidenced in the conventional linear and logarithmically binned conductance histograms (Section 

4.4). 

Taken together, the force profiles for 1, 2 and 3 illustrate that bond rupture forces are 

approximately the same for all three molecular junctions, independent of the linker position. The 

rupture force depends on the specific interaction of the Au-SMe donor-acceptor bond in each 

molecule, and the apparent insensitivity of the rupture force to the linker position, within our 

experimental force resolution, can be explained by the similar local structure near the Au-SMe 

bonds for 1-3. 

The independent analysis of force and conductance allows us to study the mechanical 

aspects of junction evolution even in the absence of conductance plateaus. In particular, the 

amount of elongation sustained by the junction before rupture – the junction elongation length - 

gives information about the geometry of the Au-molecule-Au junction. In general, the molecule 

in the junction can sample multiple binding sites during elongation before achieving the 

idealized vertical Au-molecule-Au junction geometry[18]. The junction elongation length scales 

with the molecular S-S distance, but is smaller than the molecule length, because of a non-zero 

gap that is opened when the Au point contact is broken[22]. Histograms of elongation lengths are 

constructed from individual traces and have a Gaussian distribution (Section 4.4). The peak 

values obtained from these distributions for 1-3 are presented in Table 4.1. The plateau lengths of 

1 and 3 are in accordance with their respective S-S distances. However, a relatively smaller 

plateau length is observed for 2. This could be due to non-planar configurations accessible to the 

ethane bridge in 2, which are not allowed in either 1 or 3 due to the central C=C double bond. 



64 

 

These measured elongation lengths give us further confirmation of the junction formation, 

independent of conductance[3, 25]. 

Table 4.1. Conductance, elongation length and rupture force for single molecule junctions with 

molecules 1-3. 

Molecule 

Experimental Measurements DFT 

Conductance 

(G0) 

Elongation Length 

(nm) 

Rupture Force 

(nN) 

S-S distance
 a
 

(nm) 

1 1.3×10
-3

 0.42 0.5 1.31 

2 3.2×10
-5

 0.32 0.5 1.29 

 3
 b

 - 0.31 0.5 1.17 

a - B3LYP/6-31G** level of theory 

b - non-conductive molecule 3 did not show well-defined peak in conductance profiles. 

4.3 DFT calculations and discussion of results 

Having established the similar mechanical stability for 1-3, we are able to make direct 

comparisons between the chemical structures and the corresponding conductances. We can 

unambiguously conclude that 2 is less conducting than 1 due to broken conjugation, while 3 

forms mechanically stable yet electrically insulating junctions. 1 and 3 are essentially planar 

structures with all sp
2
-carbon atoms and with similar molecular lengths; however, the meta-

positioned linker groups effectively turn off the conductance. 

To better understand these results, we have examined the electronic structures of the 

organic molecules bonded to an Au dimer (which represents one of the Au electrodes) through an 

Au-S donor-acceptor bond. We use a dimer of Au atoms to avoid complications attendant to the 

unpaired spin occupying the valence 6s orbital of a single Au atom. We attach the candidate 

organic molecule to just one "electrode" in order to appreciate what the second electrode sees as 



65 

 

 

 

Figure 4.5. Theoretical calculations. DFT optimized structures and isosurface plots of the HOMO of (a) 

Au2-1, (b) Au2-2 and (c) Au2-3. 

 

it encounters the metal-bound organic. In effect this is a simplified model for the chemical state 

of the system prior to the charge transfer. We performed DFT calculations of the electronic 

structures of these model systems at the B3LYP/6-31G** level[26]. The highest occupied 

molecular orbital (HOMO) from the geometry-optimized structures, Au2-1, Au2-2 and Au2-3, are 

shown in Figure 4.5. The HOMO of 1 extends across the entire π-space of the molecule in 

contrast to that of 2 and 3. Significantly, in 1, the HOMO connects both the terminal sulfur atoms 

and provides a clear electronic conduit between the sulfur groups. In contrast, in 2, one side of 

the molecule doesn’t communicate with the other which is a direct result of the saturated ethane 

bridge. In addition, rotation around these sp
3
-carbons increases the conformational freedom in 

the molecular junction. Therefore, a broad peak is expected in the conductance histograms 

without retarding the rupture force. In 3, we observe that although the HOMO extends across the 

bridge, it does not have significant amplitude on the sulfur atom at the meta position. This 

finding is consistent with observations from various related approaches, such as organic reaction 

kinetics[27, 28], Hammett coefficients[29], and even classic organic arrow-pushing conventions, 

which predict a node at the meta-position[30]. For direct experimental evidence, Daub and 

coworkers electrochemically quantified the charge-transport kinetics between meta- and para-
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(styryl)stilbenes[31]. However, this area has recently received more theoretical attention due to 

the possibility of studying these effects at the single-molecule level[6-12].  

In summary, single-molecule junctions of stilbene derivates with para and meta-linked 

stilbenes have been formed using a conducting-AFM approach that allows for measurements of 

single-molecule mechanics through force, independent of conductance. We have found that 

despite great differences in their conductance values, each molecule assembles into single-

molecule junctions that are mechanically stable. Our results show that both para- and meta-

linkers provide similar mechanical stability to the junctions yet radically change the 

conductance. For these reasons the para-linker groups behave as typical electro-mechano 

contacts, while meta-linkers disrupt the conduction acting primarily as mechanical contacts. By 

quantitatively accounting for the contact mechanics, these results represent the first direct proof 

that quantum interference is an inherent property arising from the molecular structure, and is not 

quenched by microscopic junction-to-junction variations. This two-property measurement 

capability extends our understanding of single-molecule junction properties to such low-

conductive and insulating systems as simple molecular connectors and dielectrics materials. 

Moreover, this approach provides a means to design and study new molecular switches and 

devices that utilize quantum interference. 

4.4 Supporting information 

Figure 4.6 compares the conductance and step length of molecule 1-3. In the conductance 

histogram (Figure 4.6a), the conductance feature for 1 is prominent in both the linearly and 

logarithmically binned histograms, while 3 has no discernable feature in either representations. 
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The peak positions of the step length distributions (Figure 4.6b) for each of the molecules 1-3 is 

tabulated in Table 4.1. 
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5 
 Van der Waals interactions in metal-organic interfaces at the 

single-molecule level 

 

The forces of attraction between atoms and molecules come in different varieties and strengths. 

One of the most ubiquitous forms of attraction in nature is called the van der Waals force, 

representing non-specific interactions with more subtle underpinnings than specific chemical 

bonding between atoms. We use our experimental approach of measuring conductance and force 

simultaneously in single-molecule junctions to characterize van der Waals forces at the metal-

molecule interface at the level of individual molecules, which has so far been challenging to 

perform quantitatively with either theoretical or experimental approaches. 

The work described in this chapter was conducted in collaboration with Dr. Mark Hybertsen who 

performed all the theoretical calculations. 

 

 This chapter is adapted from: S.V. Aradhya, M. Frei, M.S. Hybertsen, and L. Venkataraman, Nature 

Materials, 2012. 11(10): p. 872-6.  
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Van der Waals interaction, and its subtle interplay with chemically specific interactions 

and surface roughness at metal-organic interfaces, is critical to the understanding of structure-

function relations in diverse areas including catalysis, molecular electronics and self-assembly 

[1-3]. However, van der Waals interactions remain challenging to characterize directly at the 

fundamental, single-molecule level both in experiments and in first principles calculations with 

accurate treatment of the non-local, London dispersion interactions. In particular, for metal-

organic interfaces, efforts to date have largely focused on model systems consisting of adsorbed 

molecules on flat metallic surfaces with minimal specific chemical interaction [4-9]. Here we 

show, through measurements of single-molecule mechanics, that pyridine derivatives [10, 11] 

can bind to nano-structured Au electrodes through an additional binding mechanism beyond the 

chemically specific N-Au donor-acceptor bond. Using density functional theory simulations we 

show that van der Waals interactions between the pyridine ring and Au electrodes can play a key 

role in the junction mechanics. These measurements thus provide the first quantitative 

characterization of van der Waals interactions across metal-organic interfaces at the single-

molecule level. 

5.1 Experimental setup 

In this work we probe bond rupture forces and junction stiffness in single molecule 

junctions using a home-built conducting atomic force microscope (AFM). Single-molecule 

junctions are formed with 4,4’-bipyridine (BP) or 1,2-bis(4-pyridyl)ethylene (BPE) molecules 

bound between a Au substrate and a Au coated cantilever (Figure 5.1a). Measurements of current 

through the junction at under an applied bias determine the junction conductance while 

simultaneous measurements of cantilever deflection relate to the force applied across the junction 

(see methods). Figure 5.1b shows the simultaneously measured conductance (upper panel) and 
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force (lower panel) during the evolution of a Au quantum point-contact under elongation. The 

conductance traces shows plateaus at integer multiples of G0 (2e
2
/h, quantum of conductance) as 

 

Figure 5.1. Simultaneous measurement of single molecule conductance and force. (a) Schematic 

representation of a BP junction formed between a gold coated AFM cantilever and a flat gold substrate. 

Experimentally measured conductance (upper panel) and corresponding simultaneously acquired force 

(lower panel) sample traces during junction elongation for clean Au (b), BP (c) and BPE (d) junctions. 

Shaded areas in upper panels represent high conductance molecular regimes. In lower panels, the shaded 

areas represent structural rearrangements within high conductance junctions that are clearly identified by 

abrupt force fluctuations (downward pointing arrows). Rupture force is the drop in force when the 

junction ruptures to an open junction, and stiffness is the slope of fitted lines. 
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the Au point-contact thins and ruptures. When the same measurements are carried out in the 

presence of BP or BPE molecules on the Au substrate, additional conductance plateaus are seen 

in the traces at conductance values that are characteristic of a single Au-molecule-Au junction. 

Previous work has shown that pyridine terminated molecules bind to the gold electrodes in two 

distinct geometries, each with a characteristic conductance dictated primarily by the separation 

between the two electrodes [10-12]. A high conducting junction (BPH or BPEH) is formed when 

the electrode separation is smaller than the length of the molecule. Upon elongation, this junction 

can rearrange to form a low-conducting junction (BPL or BPEL). The upper panels of Figure 

5.1c,d show the conductance evolution of an Au point-contact in the presence of BP and BPE as 

a function of elongation. We see a plateau around 1G0, followed by a sequence of two plateaus at 

lower conductance values indicating that the Au single-atomic contact ruptures to form a BPH or 

BPEH junction, which rearranges to a BPL or BPEL plateau. The distance over which the junction 

remains in the high conducting state is highlighted in the upper panels of Figure 5.1c and Figure 

5.1d, and defines the high conductance step length. Statistically, we find signatures of the high 

conductance junctions in ~80% of the measured traces, and these features always precede the 

low conductance junctions, when present. BPH and BPEH can also rupture upon elongation 

without switching to their respective low conductance states. Once the Au-molecule-Au junction 

is fully ruptured, no current is measured between the tip and surface. 

The simultaneously acquired force traces (lower panels of Figure 5.1b-d) show repeated 

saw-tooth patterns, where each linear force ramp is indicative of elastic stretching of the junction 

with its characteristic stiffness (the slope of this ramp), while the drops in forces correspond to 

abrupt events involving bond rupture and junction rearrangements[13-16]. These force traces 

also clearly demonstrate typical rupture events that occur when the BPH (BPEH) junction 
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switches to a BPL (BPEL) junction. Although most abrupt force drops coincide with changes in 

conductance, we find that structural rearrangements frequently occur during the elongation of the 

BPH and BPEH junctions, without significant conductance variations, as illustrated in Figure 

5.1c,d. Several distinct load-rupture saw-tooth events are seen in these force traces during the 

span of one BPH/BPEH conductance plateau. The distance over which these junctions rearrange 

before the final load/rupture event is highlighted in the lower panels of Figure 5.1c,d and defines 

the rearrangement length. While it has been common to assume that a conductance plateau 

corresponds to the stretching of a single bonding motif[17, 18], these observations demonstrate 

that conductance plateaus can span a sequence of local junction structures[19]. Here the 

simultaneously measured force provides an independent local probe of structural rearrangement. 

5.2 Rupture forces, junction stiffness and structural rearrangements 

We measure and analyze thousands of individual force and simultaneously acquired 

conductance measurements to determine junction rupture forces (force drops in individual traces) 

and junction stiffness (slope of the force ramps). We use conductance as the fingerprint and focus 

on three distinct regimes during junction elongation: a) Au single-atomic contacts, b) low 

conducting BPL or BPEL junctions and c) high conducting BPH or BPEH junctions that rupture to 

an open junction (see methods section for details). Histograms of force and stiffness values for 

these three cases are shown in Figure 5.2a and Figure 5.2b, respectively. We find that Au single-

atomic contacts rupture with an average force of 1.5 nN and have an average effective stiffness 

of 8 N/m in excellent agreement with previously published results[13-15]. The errors in the peak 

positions of force and stiffness are dominated by the experimental uncertainty of AFM cantilever 

calibrations (see Chapter 2, Section 2.6). The widths of the distributions, on the other hand, are 

representative of intrinsic junction to junction variations that are found even in measurements 
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carried out at 4.2K in vacuum[13, 14]. The rupture force and stiffness are extremely sensitive to 

the details of the sampled potential energy landscapes[15, 16]. The measurements of sufficiently 

large datasets, as presented here, provide a statistically meaningful comparison between 

junctions that are different both chemically and physically. 

 

The low conducting BPL and BPEL junctions both rupture at ~0.8 nN in excellent 

agreement with previously published experimental measurements[14, 20] and adiabatic 

trajectory calculations performed with density functional theory (DFT) based methods for BPL 

 

Figure 5.2. Rupture force and stiffness of single molecule junctions. Histograms of (a) rupture 

forces and (b) effective stiffness for BPL (shaded green; mean rupture force Frup= 0.85 ± 0.01 nN, 

mean stiffness Kjunc = 6.7 ± 0.1 N/m, number of measurements represented N = 7763), BPEL (shaded 

red; Frup = 0.85 ± 0.01 nN, Kjunc = 8.2 ± 0.1 N/m, N = 501), Au (yellow; Frup = 1.50 ± 0.01 nN, Kjunc = 

7.7 ± 0.3 N/m, N = 2346), BPH (green; Frup = 1.48 ± 0.01 nN, Kjunc = 10.2 ± 0.2 N/m, N = 4118) and 

BPEH (red; Frup = 1.88 ± 0.02 nN, Kjunc = 14.6 ± 0.2 N/m, N = 530) junctions. Dashed lines connecting 

the peaks of the distributions are provided as visual guides. 
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junctions[14, 16]. These junctions typically show a single load-rupture saw-tooth in force, and 

exhibit a shorter conductance step (95
th

 percentile length is ~ 0.1 nm) than the high conducting 

junctions, consistent with the stretching and rupture of the N-Au bond. Both the BPL and BPEL 

junctions have a similar stiffness (7 N/m and 8 N/m respectively), close to that of Au single-

atomic contacts (8 N/m). Junction stiffness, in a simplified picture, corresponds to the effective 

spring constant of the entire metal-molecule-metal junction, where each bond can be modeled as 

a spring. Within this picture, the stiffness of a Au-molecule-Au junction, where the molecule is 

bonded to only one Au atom on each electrode apex, can only be equal to or smaller than that of 

an Au single-atomic contact. The stiffness measurements for BPL and BPEL are therefore 

consistent with geometries where the molecule bridges the apex of both electrodes through the 

formation of an Au-N donor-acceptor bond[11, 14, 16]. In contrast, the high-conducting BPH and 

BPEH junctions have an average rupture force of 1.5 nN and 1.9 nN which is equal to or larger 

than that of the single Au atomic contact. Although the average value for the BPH junction is 

similar to that for the single Au contact, the larger average rupture force measured with BPEH 

rules out an explanation of these experimental measurements based on Au-Au bond rupture. 

Since both molecules have the same terminal groups, the significantly larger rupture forces 

measured here for the high-conducting junctions demonstrate a binding mechanism that goes 

beyond the specific Au-N bond interaction. The measured stiffness for BPH and BPEH junctions 

are 10 N/m and 15 N/m respectively, both higher than the stiffness of the single Au atom 

contacts. Considered within the spring model discussed above, these large stiffness values imply 

significantly different molecule-electrode interactions involving additional binding mechanism. 

To understand better the structure of these high-conductance junctions we focus now on 

the structural rearrangement signatures measured in the force trace within BPH and BPEH 
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Figure 5.3. Structural rearrangements in high-

conducting junctions. Conductance step length and 

rearrangement length distributions for (a) BPEH and 

(b) BPH junctions show that only a small fraction of 

junctions are comprised of a single stable structure 

during elongation (counts near zero rearrangement 

length). Dashed lines are Gaussian fits to the non-

zero portions of rearrangement length distributions. 

junctions. We see saw-tooth features in addition to the final force drop due to rupture or 

switching of the junction to the low conducting state (lower panels of Figure 5.1c and Figure 

5.1d). These additional events in force indicate that these high conductance junctions undergo a 

sequence of structural rearrangements, with little impact on the conductance. The final stable 

high conductance structure exists only over a relatively small fraction of the conductance 

plateau, given by the difference between the conductance step length and the rearrangement 

length as defined above. In Figure 5.3, we show histograms of the conductance step lengths and 

the rearrangement lengths for BPH and 

BPEH junctions. These distributions, 

which are peaked at 0.15 nm and 0.26 nm 

for BPH and BPEH respectively, show that 

a large fraction of the high conductance 

steps (~88% of BPH and ~95% of BPEH) 

undergo structural rearrangements. 

Although these rearrangements could be 

due to chain formation in the Au 

electrodes[21], the high stiffness measured 

in these structures rules out this 

explanation. This shows that the molecule 

is changing its attachment point on the 

electrode under stress and/or causes the 

motion of local Au atoms[22], consistent 

with the fact that the rearrangement length scales with the length of the molecule[19]. 
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Taken together, the rupture force, stiffness and rearrangement length measurements allow 

us to deduce a model for junction formation and evolution as illustrated in Figure 5.4a. An Au 

quantum point-contact is first formed between two electrode surfaces. Upon rupture, the 

electrode surfaces present both undercoordinated Au sites that support specific N-Au donor-

acceptor bonds, as well as larger Au structures[23] that interact with the pyridine rings through 

non-specific van der Waals (vdW) interactions (both electrostatic and non-local London 

dispersion interactions). These conditions are optimal for the formation of a high-conducting 

junction. As this junction evolves under stress, it can either rupture or switch into the low-

 

 

Figure 5.4. Structural evolution during junction elongation. (a) Schematic of structural evolution 

pathways deduced from experimental observations. In addition to rupture, the high conductance junctions 

show structural rearrangement and switching to the low conductance structures. (b) Model structure 

suitable for DFT calculations in which the BP adopts a tilted configuration due to constraints of junction 

formation and in which significant contribution from dispersion interactions of the aromatic ring with the 

atomic-scale roughness can be probed. (c) Upon elongation, a structural rearrangement event that retains 

the specific Au-N bond is accompanied by a large force drop. (d) Further elongation of the final stable 

structure results in the rupture of the Au-N bond. Calculated energies (e) and forces (f) with (red) and 

without (blue) inclusion of dispersion effects demonstrates the significant contributions from dispersion 

interactions. The electrode reference energy is taken to be the final electrode structure in (d). The binding 

energy relative to the initial electrode structure in (b) is 0.45 eV stronger giving an initial binding energy 

prior to rearrangement of 1.8 eV. 
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conducting junction. This is consistent with past work where it was shown that the high-

conducting junction results when the electrode separation is smaller than the molecule length, 

while low-conducting junctions appear to occur with the molecule bridging the apex atoms on 

the electrodes[11]. 

5.3 Density functional theory simulations and comparison to experiment 

To understand the mechanics in more detail, we use DFT-based calculations to explore 

several bonding scenarios while also including the role of the dispersion interactions, the non-

local correlation contribution not captured in typical DFT implementations, within the DFT-D2 

approach[24] (see Section 5.4). We first consider the impact of dispersion interactions on the 

mechanics of low-conducting junctions. Previous DFT based calculations have focused on the 

chemically specific N-Au donor-acceptor bond in idealized BPL junctions.[14, 16] We revisit 

several prototypical structures for BP bound to a single Au-atom (see Section 5.4) and compare 

DFT results with those that include dispersion interactions. We find that the inclusion of the 

dispersion interactions leads to small increases in the bond rupture force (less than 0.2 nN). In 

these geometries the specific chemical interaction of the donor-acceptor bond dominates and 

hence gradient corrected DFT calculations[25] without dispersion interactions are sufficient to 

characterize the binding. 

To model the high-conducting geometry we consider an electrode surface that is 

illustrated in Figure 5.4b, where the rough electrode surface is modeled by an asperity consisting 

of a two-atom high ridge. The BP molecule is bonded to an adatom near a two-layer ridge. The 

tilt of the BP molecule backbone models the constraint of bonding to the other electrode (implicit 

here and simulated by control of the position of the upper N atom). The chemical N-Au donor-
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acceptor bond strength is found to be about 1 eV. In addition, due to the proximity of the ridge 

structure, the dispersion interaction contributes an additional 0.8 eV to the binding energy. The 

junction elongation is simulated by moving the molecule vertically upwards in increments of 

0.01 Å followed by a relaxation with the upper (unbound) N fixed (Figure 5.4b-f). After an 

elongation of 0.16 nm there is an abrupt structural rearrangement: the molecule pulls the adatom 

to an adjacent hollow site while maintaining the Au-N bond intact (Figure 5.4c). The calculated 

force drop for this event is about 0.8 nN, consistent with the force drops accompanying structural 

rearrangements in the experiment (Figure 5.1c,d). As the junction is elongated, the ring passes 

the edge of the asperity and the loss of vdW interaction energy contributes significantly to the 

maximum sustained force of 1.8 nN (Figure 5.4d), in good agreement with the experimental 

results. The dispersion contributions account for 1 nN for this specific trajectory. Overall, the 

contribution of non-specific, vdW interactions (electrostatic plus dispersion) to the maximum 

sustained force is sensitive to the interplay between the local N-Au bond elongation during 

rupture and the coordination of the ring to the ridge structure; the vdW contribution is likely 

between 0.4 to 1 nN. 

The key results of the calculations are twofold: (1) in the low-conductance BPL junctions, 

the dispersion contribution is minimal and (2) in the high-conductance BPH junctions, both 

chemically specific Au-N and vdW interactions need to be considered together to explain the 

experimentally measured rupture forces. For junctions with the longer BPE molecule, the 

specific chemical interactions are similar to BP, but the increased length can lead to more 

optimized vdW interactions of the pyridine rings with Au structures, longer sequences of 

structural rearrangement and to even larger rupture force and stiffness compared to BP, as 

observed in the experiment. Finally, the constrained geometry in Figure 5.4c results in the N-Au 
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bond being at a substantial angle to the plane of the pyridine ring, consistent with a link structure 

that was previously proposed to explain the high conductance junction[11]. In addition, the 

proximity of the C atoms in the pyridine ring to the top of the ridge structure (3.5 Å) facilitates 

enhanced electronic coupling[26] and is therefore expected to contribute to the higher 

conductance[22]. We have ruled out any appreciable mechanical stabilization due to specific Au-

C bonding through control measurements with 4-phenylpyridine and 4-styrylpyridine molecules 

(see Section 5.4). These molecules have the same molecular structure as BP and BPE 

respectively, except there is a nitrogen atom on only one side of the molecule to form specific N-

Au bonds. Neither of these molecules show well-defined conductance plateaus and force 

measurements with 4-styrylpyridine do not show any force saw-tooth events beyond the Au G0 

rupture. These results demonstrate that there are no independently formed Au-C bonds that are 

comparable in strength to the chemical Au-N interactions seen in these systems. 

In summary, we have used an atomic force microscope to probe the interplay between 

specific Au-N and non-specific van der Waals interactions between the surface structure on the 

Au electrode and two pyridine terminated molecules. Our results provide a unique quantitative 

measurement of the relative importance of these two types of interfacial interactions at the 

single-molecule level, in a regime where they are of comparable magnitude. These results will 

have particular impact on the drive to develop accurate theoretical treatment of van der Waals 

interactions at metal-molecule interfaces currently in a nascent stage, and especially to go 

beyond the simplest model systems of ideal, flat surfaces towards the treatment of nanostructured 

metals that are critical to many areas of research and future technological applications. 
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5.4 Supporting information 

DFT Calculations: The BP interaction with the Au electrode was modeled with a periodic 

slab geometry consisting of three monolayers of (111) oriented Au plus ad-structures and the 

molecule. The surface unit cell for the ridge plus adatom structure illustrated in Figure 5.4 was 

5×5. The vertical distance between the upper N atom and the bottom Au layer in the periodic 

supercell was at least 13 Å. During simulation, the two back layers atoms in the Au slab were 

held fixed with a bulk lattice parameter of 4.13 Å. All other degrees of freedom were relaxed 

until all forces were less than 0.01 eV/Å for each structure. We focus on one side of the junction, 

considering only one N-Au link bond, and fix the position of the other N atom in the BP 

molecule to define a specific value of elongation. The junction was elongated in steps of 0.01 Å 

by shifting the BP molecule relative to the slab. Data is recorded for every 0.05 or 0.1 Å of shift 

with a force criterion for structural relaxation enforced. Most of the calculations to date in the 

literature consider molecules on flat metal surfaces. We find a strong influence of the additional 

Au-Au interactions on the ad-structures (pyramid and ridge). Therefore, we use a perturbative 

approach, as has been done in other studies involving undercoordinated metal structures[27]. 

To estimate the role of van der Waals interactions in the bond rupture process, the semi-

empirical Grimme DFT-D2 approach[24] to correct the PBE version of the generalized gradient 

approximation[28] as implemented in the VASP package[29] has been employed. Several 

estimates for the C6 coefficient for Au appear in the literature[7, 30, 31] ranging from 220 to 615 

eV-Å
6
. We use C6 = 422 eV-Å

6
 with R0 = 1.772 Å. The additional Au-Au interaction is relatively 

strong. As noted in the context of the recently revised Tkatchenko-Scheffler semiempirical 

scheme, the effect of screening is important in the metal[8]. In the DFT-D2 approach, we limit 

the range of the d
-6

 interactions with a relatively short cut-off (6 Å). The bulk fcc lattice 
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parameter for Au is calculated to be 4.13 Å with these parameters in the DFT-D2 scheme, about 

1% larger than experiment. The generalized gradient approximation (PBE) gives 4.17 Å, 

indicative of the extra attractive interaction in the DFT-D2 scheme. The periodic slabs in the 

supercell geometry employed assure more than 10 Å separation between the tip of the molecule 

and the first layer of Au in the next cell above. The lateral cells employed (4x5 and 5x5) for the 

bipyridine studies assure that the interaction between the additional dipole associated to the N-

Au donor-acceptor bond in the primary cell and those in the periodic replicas contribute less than 

0.05 eV to the binding energy. This conservative estimate is based on our prior analysis of 

ammonia bonding to an Au adatom[32] and 1/d
-3

 scaling. Finally, the use of a 3 ML Au slab is 

consistent with the relatively short cut-off used in the DFT-D2 approach. Further, single point 

calculations indicate that an additional Au layer has a minimal impact on the binding energy 

(<0.05 eV). 

For calibration, we considered the adsorption energy of benzene flat on the Au(111) 

surface. We found a relatively reasonable adsorption energy, 0.88 eV, with the benzene at 3.0 Å 

above the plane of the surface. These results are close to those reported for benzene on Ag(111) 

(0.81 eV and 2.93 Å) using the new Tkatchenko-Scheffler scheme. Application of an approach 

based on the van der Waals Density Functional approach[33] gave weaker binding (0.42 eV and 

3.7 Å)[34]. A desorption energy of 0.64 eV has been estimated from temperature programmed 

desorption (TPD) experiments[35]. There is some evidence that the standard choice of prefactor 

(1×10
13

 s
-1

) is too small for larger molecules[8, 36]. With values as high as 1×10
18

 s
-1

, the 

estimated desorption energy could be as large as 0.88 eV. This test suggests that the DFT-D2 

approach overestimates van der Waals interactions involving Au for this parameter set. For a 
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single ring, the error could be as much as 0.24 eV, depending on the interpretation of the TPD 

experiments. 

Our previously published calculations of adiabatic trajectories for 4,4’-bipyridine were 

based on pyramidal cluster models for the tips (20 Au atoms for each tip) and designed to 

simulate the low conductance configuration in the experiments; dispersion interactions were not 

considered[14]. When focusing on a single link bond to the apex of a symmetric pyramid and 

with the backbone of the BP oriented vertically, a maximum sustained force of 1.11 nN was 

calculated (Table 5.1). Here we perform similar calculations with a slab model plus a small 

pyramidal tip (4 atom) in a 4×5 surface unit cell. These trajectories are calculated with steps of 

0.1 Å or 0.2 Å and structure relaxation to a force criterion of 0.03 eV/Å at each step. The 

backbone is initially tilted about 20 degrees from normal and a similar force results (Table 5.1). 

For a single adatom tip, the binding energy is larger and the maximum sustained force increases 

to 1.5 nN (Figure 5.5). Interestingly, for this modest backbone tilt angle, there is a step in the 

trajectory where the adatom jumps to an adjacent hollow site. This illustrates that details of the 

Au atomic structure near the link bond point affect binding energy and hence maximum 

sustained force, as one would expect on general grounds. When the dispersion interaction is 

included as a perturbative correction using the structure optimized with PBE only, the maximum 

sustained force increases slightly (0.14 nN and 0.18 nN for the 4 atom pyramid and the adatom 

respectively). As a comparison, a trajectory for the adatom tip was also computed with the 

dispersion interaction included in the geometry optimization. The binding energy and maximum 

force are very similar, although the adatom does not shift due to its stronger adhesion to the 

surface within the Grimme scheme. 
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Table 5.1. Comparison of binding energy and maximum sustained force for a series of link-electrode 

structures and computational approaches. 

Configuration / Theory 
Binding Energy 

(eV) 

Maximum Force 

(nN) 

Pyramid model / PBE 0.75 1.11 

Slab + 4 atom tip / PBE 0.81 1.12 

Slab + adatom tip / PBE 0.97 1.5 

Slab + 4 atom tip / PBE + vdW (geo PBE) 0.96 1.26 

Slab + adatom tip / PBE + vdW (geo PBE) 1.16 1.68 

Slab + adatom tip / PBE + vdW (geo PBE+vdW) 1.14 1.69 

 

 

Control experiments: We have carried out control measurements with 4-phenyl-pyridine 

(PP) and 4-styryl pyridine (SP) (obtained from Sigma Aldrich). These are analogous to BP and 

BPE, respectively, except that they have a pyridine group on only one end and a phenyl group on 

the other end. The conductance measurements with these compounds did not show well-defined 

conductance plateaus and no clear peaks appear in the linear binned conductance histograms 

 

Figure 5.5. DFT adatom geometry calculations. (a) Relaxed structure near minimum energy for the 

adatom tip model. Energy (b) and force (b) versus elongation (zero taken from the minimum energy 

point) with three approximations: PBE, PBE+vdW (geometry optimization with PBE), and PBE+vdW 

(geometry optimization with PBE including vdW forces). 
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(Figure 5.6a). This demonstrates that no well-defined conducting junctions are formed with 

molecules that have only one pyridine link. Force measurements from the longer compound (SP) 

do not show any saw-tooth rupture events beyond the Au G0 rupture. Using a force event 

detection algorithm as detailed in our previous work[37] (see also Chapter 2, Section 2.7), the 

rupture force distribution in Figure 5.6b shows that a negligible fraction of traces have force 

events beyond the set threshold value of 0.3 nN (~2× standard deviation of instrument noise). If 

specific Au-C interaction were the sole reason for the observed large rupture force of BPE, their 

presence would be expected to result in a measurable rupture force for SP. Finally these control 

measurements with SP show that in this case, non-specific vdW interactions are not sufficient to 

form junctions with well-defined conductance plateaus or force events at room temperature. 

 

 

Figure 5.6. Force and conductance data from control experiments. (A) Conductance histogram for 

BP, PP, BPE, and SP generated from over 6000 traces, using linear bins of width 10
-6

 G0. (B) Histogram 

of forces measured in the presence of SP for the G0 single atom contact (in yellow) and for the largest 

force event greater or equal to a preset threshold value of 0.3 nN (dashed line) measured beyond the G0 

contact rupture. 
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Force summary: Table 5.2 summarizes the mean values of measured forces and stiffness 

for Au G0, BPH and BPL junctions, including BPH-BPL switching. The switching force is defined 

as the difference between the force value just before rupture of the BPH junction and the value 

just after switching to the BPL junction (for instance in Figure 5.1c). The non-zero switching 

force implies that the high and low conductance structures are indeed significantly different, and 

that the switching between these two states involves an abrupt structural change. We note that the 

relatively large starting forces indicate that, on average, the junctions form under a non-zero 

tensile stress. We also observe that there is only slight difference in rupture force and stiffness 

between those BPH junctions that rupture and those that switch to the low conductance state, 

indicating that their binding is not significantly different. 

Table 5.2. Summary of forces and stiffness of various Au and BP junction evolution scenarios. 

Scenario 
Rupture Force 

(nN) 

Stiffness 

(N/m) 

Starting Force 

(nN) 

Switching Force 

(nN) 

Au G0–rupture 1.50 ± 0.01 7.7 ± 0.3 1.07 ± 0.01  

BPH–rupture 1.48 ± 0.01 10.2 ± 0.2 0.73 ± 0.01  

BPL–rupture 0.85 ± 0.01 6.7 ± 0.1 0.52 ± 0.01  

BPH–switch–BPL 1.31 ± 0.02 9.3 ± 0.2  0.60 ± 0.02 
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6 
 Correlating structure, conductance and mechanics 

of silver atomic-scale contacts 

While Au single atomic contacts have been well-studied, Ag remains challenging to study 

experimentally. Here we measure the conductance and force across silver atomic-scale contacts 

and find two additional conductance features at ~0.4 G0 and ~1.3 G0, beyond the 1 G0 feature 

corresponding to the single atomic contact. Using a conductance cross-correlation technique, we 

distinguish three different atomic-scale structural motifs and analyze their rupture forces and 

stiffness. Combined with previous studies, our results allow us to assign the ~0.4 G0 conductance 

feature to an Ag-O-Ag contact and the ~1.3 G0 feature to an Ag-Ag single-atom contact with an 

oxygen atom in parallel. Utilizing complementary information from force and conductance, we 

thus demonstrate the correlation of conductance with the structural evolution at the atomic scale. 

This work was performed in collaboration with Prof. Andras Halbritter, with experimental 

support from Dr. Michael Frei. 

 This chapter is adapted from: S.V. Aradhya, M. Frei, A. Halbritter, and L. Venkataraman, ACS Nano, 

2013. 7(4): p. 3706-12.  
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The electronic properties of metal single-atom contacts have been studied extensively 

using the mechanically controlled break-junction technique and the scanning tunneling 

microscope based break-junction technique[1]. The most commonly studied metal in such 

measurements is gold (Au) due to its chemical stability in ambient conditions, and its relative 

ease in metallizing various surfaces. Electronic measurements with a series of other metals have 

been carried out under ultra-high or high-vacuum conditions[2-8]; however, there are very few 

studies of the mechanical properties of these nanoscale wires and point-contacts for metals other 

than Au[9]. In this chapter, we present simultaneous force and conductance measurements of 

silver (Ag) atomic contacts and compare their properties with Au contacts. Whereas Au atomic 

contacts show a clear 1 G0 (G0 = 2e
2
/h, the quantum of conductance) feature corresponding to the 

formation of single atomic contacts even under ambient conditions, Ag shows additional features 

at ~0.4 G0 and ~1.3 G0. Such conductance features have been observed in previous experimental 

studies[10-12], and theoretical investigations[13-16] have provided detailed insight into their 

structural origin. In particular, molecular O2 is known to dissociate into atomic O and adsorb to 

undercoordinated Ag atoms, even at temperatures as low as 105 K[17-19]. An oxygen atom can 

therefore be expected to bond to the highly reactive Ag atomic-size contact, and bridge an Ag-Ag 

contact either in parallel or in series as Ag-O-Ag. Such events are more pronounced in Ag 

compared to Au, due to its higher reactivity[11, 20]. Measurements with Ag point contacts 

therefore present richer possibilities in structure and evolution under elongation when compared 

with Au single atomic contacts and also open up the possibility to study in-situ reactions that 

could lead to the formation of novel single-molecule junctions[21]. 

In this study, we measure, simultaneously, the electronic and mechanical properties of Ag 

point contacts using a custom atomic force microscope to probe the formation and evolution of 
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Ag contacts under ambient conditions. We measure thousands of junctions to carry out a 

statistical analysis in a robust manner. We find that during the thinning of Ag point contacts 

under junction elongation, there are not only conductance plateaus due to Ag single-atom 

contacts (with conductance of ~1 G0), but also plateaus at ~0.4 G0 and ~1.3 G0 which we assign 

to the presence of atomic oxygen impurities. Although we cannot rule out the presence of other 

impurities in our experiments, our observed experimental evidence is consistent with previous 

experimental[10-12] and theoretical[13-16] studies which attribute these conductance features to 

atomic oxygen in Ag contacts. We use a cross-correlation technique[22, 23] to study the mutual 

conditional occurrence of these three conductance features in a statistically robust manner. The 

insights from these cross-correlations allow us to employ a simple algorithm to sort junctions 

based on their structures into three distinct groups: (a) junctions with a single Ag-atom contact 

(Ag-SAC) (b) a single Ag-atom contact with a parallel oxygen atom bridge (AgO-P) and (c) a 

single-Ag-atom contact incorporating an oxygen atom in series (AgO-S). We deduce the 

structural evolution pathways for these junctions and analyze the force data to quantify the 

mechanics of the three distinct contacts. We find that the 1 G0 conductance features, which arise 

from Ag single atomic contacts, have a rupture force of 1 nN and a stiffness of 8 N/m. The 0.4 G0 

features, which are attributed to the configuration with an oxygen atom in series, have slightly 

lower rupture forces (0.8 nN) but have a stiffness (8 N/m) comparable to that of the single Ag-

atom contact. In contrast, structures with oxygen in parallel (with a conductance of ~1.3 G0) 

show a significantly higher rupture force (1.7 nN) and a higher stiffness (14 N/m). Together, 

these quantitative results not only represent the first direct measurement of the mechanics of Ag 

point-contacts, but also allow us to unambiguously conclude that the Ag-O bonds are comparable 

in strength to the Ag-Ag bonds and can mechanically stabilize them when in parallel. 
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Figure 6.1. Experimental setup and sample simultaneously measured conductance and force data. 
(a) Schematic of the experimental setup used for simultaneous force and conductance measurements. (b) 

Sample trace showing the evolution of conductance (red, left axis) and force (blue, right axis) for an Ag 

point contact as a function of junction elongation. The drop in force at the end of the conductance step 

corresponds to the rupture force, while the slope of the force trace over the conductance plateau is related 

to the stiffness of the junction. 

6.1 Conductance features 

We carry out simultaneous conductance and force measurements using an atomic force 

microscope based break-junction method (AFM-BJ). To gather larger statistics on conductance 

correlations, we also carry out conductance measurements alone in a scanning tunneling 

microscope based break-junction setup (STM-BJ)[24]. The AFM experimental setup and 

analytical procedures are detailed in the Methods section, and have also been described in detail 

previously[25, 26]. Briefly, a Ag coated AFM cantilever and a freshly mechanically polished Ag 

substrate are repeatedly brought in and out of contact using a high resolution piezo positioner at a 

constant velocity. Conductance is measured across the tip/sample junction at constant bias of 25 

mV. The force is measured simultaneously by monitoring the deflection of a laser focused on the 

back of the cantilever as schematically illustrated in Figure 6.1a. Figure 6.2b shows conductance 

(red) and force (blue) measurements from a typical Ag junction elongation and rupture. 

Conductance decreases stepwise as a function of displacement, similar to what is observed for 

Au point-contacts[1]. The simultaneously measured force traces show a typical saw tooth pattern 
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attributed to reversible (elastic) and irreversible (plastic) deformations[27]. 

To understand the details of the different conductance plateaus seen with these traces, we 

first collect a large data set of 10,000 Ag conductance traces with the STM-BJ setup as it is easier 

to gather large data sets with a Ag wire tip in the STM as opposed to using an Ag coated 

cantilever necessary for the AFM-BJ measurements. We analyze the conductance traces by 

creating a linear-binned histogram without data selection. Figure 6.2a compares 1D conductance 

histograms (normalized by the number of included traces) for Ag (grey) with that for Au 

(yellow). Both histograms reveal characteristic peaks at well-defined conductance values, 

although the peaks are more prominent for the Au measurements. As in Au, a 1 G0 conductance 

plateau in Ag corresponds to a junction with a single conducting channel with unit 

transmission[8, 28-31]. However, it is known that Ag contacts do not form long single atomic 

chains[8, 28-31]; indeed, we see a reduced 1 G0 peak as Ag plateaus are considerably shorter. 

Additionally, the Ag histogram peak does not show a clear peak around 1.8 G0, unlike the Au 

histogram, but a peak around 2.5 G0 is clearly visible. This higher conductance peak at ~2.5 G0 

has been attributed to a stable contact geometry with a triangular (3-atom) cross-section[8, 31]. 

The Ag measurements also show a large number of counts below 1 G0, corresponding to larger 

through-space tunneling currents after junction rupture, indicating that the dynamics of the 

atomic-scale relaxation of Ag single-atom contacts immediately after rupture is different from Au 

contacts[12, 30, 32].  The presence of other adsorbates around the junction could also be 

responsible for the counts at lower conductance values in Ag junctions. 

The Ag histogram in Figure 6.2a also shows a feature around 0.4 G0 indicating that a 

frequent and stable configuration with that conductance is formed when Ag contacts are 

broken[10-12]. Since O2 from the ambient environment can dissociate on under-coordinated 
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silver atoms[17-19], we can expect oxygen atoms to interact with the Ag point-contacts to form 

Ag-O containing structures. Theoretically, Ag-single atom contacts with an O in series were 

 

Figure 6.2. One-dimensional and two-dimensional cross-correlation conductance histograms. (a) 

One-dimensional conductance histograms (linearly binned, bin size 0.001 G0) constructed without any 

data selection for 10,000 Ag (grey) traces; Au (gold) histogram is shown for comparison. These traces 

were measured with the STM-BJ setup. The highlighted regions indicate conductance ranges associated 

with AgO-S (red), Ag-SAC (grey) and AgO-P (green). (b) 2D cross-correlation histogram constructed 

without data selection for Ag traces. The panels on the right are profiles along the dotted lines shown on 

the cross-correlation histogram, at 0.9 G0 and 1.3 G0, respectively. The scale bar indicates the color scale 

used for the correlation values: red - positive, blue – negative and white – zero correlation. The black 

contours are at ± 0.05. (c) One-dimensional conductance histograms constructed from selected traces that 

have at least 80 data points in the Ag-SAC (grey, 3904 traces), AgO-S (red, 3345 traces) and AgO-P 

(green, 2501 traces) conductance ranges, respectively. 
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shown to have a conductance of ~0.4 G0[13, 16]. Furthermore, it was shown experimentally that 

the 1 G0 single atom contact feature in 1D conductance histograms was suppressed when traces 

showing 1.3 G0 and 0.4 G0 features were selectively analyzed[10]. These results highlight the 

need to better understand the structure and structural evolution basis for the observations. In 

what follows, we utilize the independently measured conductance and force data to determine the 

structural evolution pathway by first quantifying the correlations in the occurrence of different 

structures using conductance as their structural fingerprint and then analyzing the mechanical 

properties of each of these structures. 

6.2 Correlations among conductance features 

We first carry out a statistical correlation analysis for the measured conductance traces by 

constructing a two-dimensional cross-correlation histogram (Figure 6.2b), using a procedure 

detailed previously[22, 23] (see section 6.4). Briefly, the 2D cross-correlation histogram shows 

the correlation in either the occurrence or in the plateau lengths of different conductance features 

within individual traces. Positively (negatively) correlated regions indicate that two conductance 

values occur (do not occur) together in the same trace frequently[22]. In Figure 6.2b (right 

panel), we also plot a vertical profile of this 2D correlation plot taken at ~1 G0 (corresponding to 

the dashed line at 0.9 G0 on the cross-correlation histogram) where correlations between a 1 G0 

feature and those at other conductance values are elucidated. Along this line profile, the red, 

positively correlated region around 2.5 G0 indicates that plateaus around 1 G0 and 2.5 G0 

frequently occur together in the same trace. In contrast, the blue regions around 0.4 G0 and 1.3 

G0, which we attributed to the presence of O in the junction, indicate that 1 G0 plateaus are anti-

correlated with plateaus at either of these values. Next, we consider a vertical section around 1.3 

G0 (corresponding to the dashed line at 1.3 G0 on the cross-correlation histogram, Figure 6.2b). 
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Along this profile, the red regions around 0.4 G0 indicate that the structures responsible for 

conductance plateaus at 1.3 G0 and 0.4 G0 are correlated. 

A subtle, but important detail in the analysis of cross-correlation histograms is that the 

negative values in the cross-correlation histogram can stem from two reasons: a) anti-correlations 

in occurrence (occurrence of two conductance plateaus is mutually exclusive), or b) anti-

correlations in plateau lengths (longer plateau length at one conductance value is accompanied 

by a shorter plateau length at the other conductance, and vice versa). To determine whether the 

anti-correlation between the 1 G0 plateau and those at 1.3 G0 and 0.4 G0 is due to the an anti-

correlation in their occurrence or anti-correlation in their plateau lengths, we construct 

conditional histograms[22, 23] from subsets of all measured traces, selecting for conductance 

features defined by the highlighted regions in Figure 6.2a. Specifically, we first select traces that 

have more than 80 data points (equivalent to a minimum plateau length of ~0.015 nm) within 

one of the three conductance ranges: 0.7 to 1.0 G0 for Ag-SAC region, 0.25 to 0.55 G0 for the 

AgO-S region and 1.1 to 1.4 G0 for the AgO-P region. These conductance ranges and the plateau 

length cut-off are determined from a logarithmically binned conductance histogram as detailed in 

the Methods section. We then construct conditional 1D histograms (Figure 6.2c) of the selected 

traces, without any other selection criteria. We observe that by selecting for the Ag-SAC 

plateaus, both the AgO-S and AgO-P features are highly suppressed, whereas the 2.5 G0 feature 

is retained. This indicates that clean Ag-SAC junctions occur when oxygen impurities are absent 

in the vicinity of the junction. This result is in agreement with the cross-correlation analysis in 

Figure 6.2a, and with data from Ag contacts measured in an oxygen-free high-vacuum 

environment[8]. Similarly, by selecting for AgO-S conductance there is a dramatic suppression 

of the Ag-SAC feature. This supports the finding from the cross-correlation analysis that AgO-S 
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Figure 6.3. Junction evolution and conductance histograms of selected traces. (a) Schematic 

illustration of the three bonding motifs representing a clean Ag single atomic contact (Ag-SAC), Ag 

atomic contact with a series O bridge (AgO-S), Ag atomic contact with a parallel O bridge (AgO-P), and a 

ruptured junction. Arrows indicate the experimentally inferred structural evolution pathways. (b) One-

dimensional conductance histograms constructed from selected AFM-BJ traces for Ag-SAC (grey, 955 

traces), AgO-S (red, 355 traces), AgO-P (dark green, 214 traces), and AgO-P to rupture (light green, 90 

traces). 

 

and Ag-SAC junctions do not occur in the same trace. On the other hand, by selecting for the 

AgO-P conductance we note that the Ag-SAC feature is reduced, but not fully suppressed. This 

could imply that occasionally Ag-SACs occur after the AgO-P junction, with anti-correlated 

plateau length[22]. However, since the AgO-P and Ag-SAC conductance ranges are close, it is 

also possible that we when we select traces with AgO-P features, we inadvertently pick a trace 

with Ag-SAC plateau. This is because the tail of the 1 G0 histogram peak extends above 1 G0, as 

is most clearly visible for the Au data (Figure 6.2a). 

These structural insights are summarized as a schematic illustration in Figure 6.3a, which 

shows the structural transition pathways for the Ag and Ag/O junctions. This scheme motivates 

the use of conductance features combined with simultaneous force measurements to quantify the 

mechanics of the various structural evolution scenarios of these atomic-scale junctions. Whereas 

AgO-S and Ag-SAC junctions rupture upon elongation, AgO-P junctions can rupture to an open 
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contact, or evolve into an AgO-S or, perhaps, into an Ag-SAC junction. In our analysis of forces, 

we treat these categories separately. 

6.3 Mechanics of distinct structural motifs 

We now analyze the data acquired using the AFM-BJ setup where we measure force 

simultaneously with conductance in 6,500 junctions. We first sort all measured traces to 

differentiate the structures based on the conductance features as detailed above. We further 

ensure that the Ag-SAC and AgO-S junctions rupture under elongation by selecting those traces 

where the conductance after rupture goes below 0.01 G0 within 80 data points. For the AgO-P 

junctions, we only include traces which have less than 80 data points in the Ag-SAC conductance 

range (0.7 – 1.0 G0) and fewer than 80 data points in the 0.01 – 0.25 G0 conductance range as 

detailed above. With these requirements, we only include AgO-P junctions that evolve to AgO-S 

junctions or that rupture completely (Figure 6.3a). To characterize the subset of AgO-P junctions 

which rupture without evolving into an AgO-S structure, we select AgO-P junctions that have 

less than 80 data points in from 0.01 G0 to 1.0 G0 conductance range, thereby excluding Ag-SAC 

and AgO-S conductance features that could occur after the AgO-P conductance plateau. We note 

that not every conductance trace among the dataset (consisting of 6,500 simultaneous 

measurements of conductance and force) contains one of these structures of interest. Normalized 

conductance histograms from these selected subsets are shown in Figure 6.3b, which has the 

same peaks as those shown in Figure 6.2b, but very few counts in the low-conductance region, as 

traces that contribute to this region have been excluded in the selection. Peaks at 1 G0, and 0.4 G0 

are seen in the Ag-SAC and AgO-S scenarios, analogous to those in Figure 6.2b. For the AgO-P 

junctions that rupture completely, a peak at 1.3 G0 is observed. For the selection that includes 
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AgO-P junctions that evolve into an AgO-S junction, we see an additional conductance peak in 

the AgO-S range. 

We can now analyze the simultaneously measured force data to determine rupture force 

and stiffness of individual junctions, for each of the four types of traces selected above (see 

section 6.4). We begin by locating the displacement range corresponding to the conductance 

plateau of interest (Figure 6.3b). We then obtain the rupture force by determining the force drop 

at the position where conductance plateau ends, i.e., where the conductance drops abruptly below 

the plateau level (as illustrated in Figure 6.1b). We determine the stiffness of the junction by 

extracting the slope of the force ramp prior to the sharp drop (dotted line, Figure 6.1b). Since the 

force trace shows additional features during the course of a conductance plateau due to atomic-

scale rearrangement, we use an automated algorithm[26] to isolate the final force event and use 

the slope of this segment to reliably obtain the stiffness of the junction (Chapter 2). This 

measured stiffness is the stiffness of the entire junction and also includes the stiffness of the 

cantilever. To determine the junction stiffness, we correct the measured value using a series 

spring model for the measured spring constant[33] of the AFM cantilever (~50 N/m) for each 

junction. Histograms of rupture force and stiffness are shown in Figure 6.4a,b along with 

Gaussian fits used to determine the mean rupture force and stiffness for each junction type. The 

results are from this analysis are summarized in Table 6.1. 

We first observe that the measured rupture force for Ag-SACs (1 nN) is significantly 

smaller than that of an Au single-atom contact (1.5 nN)[25-27]. This is in excellent agreement 

with previous theoretical calculations that have consistently found a lower rupture force of ~1 nN 

for Ag-SACs compared to ~1.5 nN for Au[14, 34-37]. The stiffness of Ag-SACs of 8 N/m is the 
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same as that measured for Au[26, 27], perhaps reflecting their similar bulk Young’s modulus of 

Ag and Au (~80 GPa)[38]. 

 

The AuO-S junctions have slightly smaller rupture force (0.8 nN) than Ag-SAC junctions, 

and stiffness (8 N/m) equal to the Ag-SAC junctions, within experimental error. Representing the 

interatomic bonds as springs in a simplified model, in a AgO-S junction, the two Ag-O bonds are 

 

Figure 6.4. Rupture force and junction stiffness histograms. (a) Histograms of rupture force and (b) 

stiffness for Ag-SAC (grey), AgO-S (red), AgO-P (dark green) and AgO-P to rupture (light green). 

Gaussian fits are overlaid as solid curves and the dashed lines are provided as visual guides connecting 

the peak values. 
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in series with the Ag electrodes, and thus its stiffness and rupture force can only be smaller than 

or equal to that of an Ag-SAC (Figure 6.3a). Theoretical calculations indicate that the Ag-O bond 

strength might be comparable to the Ag-Ag bond in the Ag-SAC case[14, 34]. Experimentally, 

the observation of enhanced formation of monatomic Ag wires in low temperature break junction 

experiments (< 40 K) in the presence of oxygen also supports the idea that Ag-O bonds are 

comparable in strength to Ag-Ag bonds[11, 12]. Our experimental results thus present a 

quantitative measurement of the Ag-O bonding strength. 

Table 6.1. Most frequently measured force and stiffness. Sample size for each case and standard errors 

in the fit are also shown. 

Type # of traces Force (nN) Stiffness (N/m) 

Ag-SAC 955 0.95 ± 0.02 7.7 ± 0.5 

AgO-S 344 0.83 ± 0.03 8.2 ± 0.8 

AgO-P 215 1.24 ± 0.06 13.1 ± 1.2 

AgO-P to rupture 90 1.66 ± 0.09 14.1 ± 2.1 

 

For the AgO-P junctions that rupture completely, we obtain a rupture force (stiffness) of 

1.7 nN (14 N/m) when the junction ruptures to an open contact. However, if the AgO-P junctions 

that evolve to AgO-S junctions are included, the rupture force and stiffness are found to be 1.2 

nN and 13 N/m respectively. The rupture force for an AgO-P junction is thus much larger than 

for Ag-SAC and AgO-S. This strongly indicates that the oxygen atom is stabilizing the junction 

in AgO-P junctions. In an AgO-P configuration (Figure 6.3a) we expect the Ag-O bonds to be in 

parallel to the Ag-Ag bonds; such a junction will be stiffer than Ag-SAC and if it ruptures upon 

elongation, we expect a larger rupture force than that of an Ag-SAC. The stiffness and rupture 
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force results obtained here provide conclusive evidence that the 1.3 G0 junctions are indeed those 

that have an O in a parallel configuration. The fact that the stiffness of AgO-S junctions is almost 

the same as Ag-SAC junctions further demonstrates that the Ag-O bonds are comparable to Ag-

Ag bonds in terms of their mechanical properties. On the other hand, the parallel Ag-O bonds in 

AgO-P junctions can be intuitively thought of as providing additional stabilization, as well as a 

parallel spring in the junction. Finally, we note a subtlety in interpreting the meaning of the 

measured rupture force of AgO-P junctions. The lower rupture force in AgO-P junctions which 

evolve into AgO-S structure is due to the fact that the junction does not rupture to an open 

contact. This prevents the AFM cantilever from relaxing completely and therefore the measured 

drop in force is smaller than the full value that is observed in the AgO-P junctions that rupture to 

a conductance below the 0.01 G0 cut-off. Therefore, in this context, the measured forces 

correspond to the difference between the maximum sustained force by AgO-P junctions and the 

initial force sustained by the succeeding AgO-S junction. However, the measured stiffness is 

approximately the same (within experimental error) for AgO-P junctions, whether considering 

only the subset of junctions that ruptures or including junctions that evolve into AgO-S structures 

as well, since the basic AgO-P structure is the same, irrespective of the evolution scenarios. 

In conclusion, we have studied the electric and mechanical behavior of Ag junctions in 

ambient conditions. These measurements show conductance features of clean Ag-SACs as well 

as Ag contacts that include O impurities. Using a selection process based on the cross-

correlations among the conductance of various junction structures, we are able to analyze 

different junction structures separately. The results from the force measurements allow us to 

rigorously quantify the mechanics of Ag-SAC, AgO-S and AgO-P structures, adding significantly 

to our understanding of the behavior of atomic-size junctions of Ag, and their contrast with Au. 
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We expect the experimental methods and results presented here to enable progress in the study of 

single molecule junctions with Ag electrodes. 

6.4 Supporting information 

Figure 6.5 shows the logarithmically binned one-dimensional conductance histogram of 

10,000 Ag traces measured with the STM-BJ setup, which visualizes the same data represented 

in Figure 6.2a in the main text. In the logarithmically binned histogram the peaks in the 

conductance data, as well as their minima, appear more clearly. This allows us to define the 

conductance ranges for the Ag-SAC (0.7 G0 – 1.0 G0), AgO-S (0.25 G0 – 0.55 G0) and AgO-P 

(1.0 G0 – 1.4 G0), as highlighted by the shaded regions in Figure 6.5. 

 

Figure 6.6 shows additional sample traces for each of the cases discussed in the main 

text. Figure 6.6a represents an Ag-SAC junction that ruptures after the 1 G0 conductance plateau. 

Conductance features at 1.8 G0 and 2.5 G0 are also observed before the 1 G0 plateau. 

 

Figure 6.5. Logarithmically binned one-dimensional histogram. Histogram constructed from STM 

measurements of (10,000 traces, 167 bins per decade). Ag-SAC (grey), AgO-S (red) and AgO-P (green) 

conductance ranges are highlighted. 
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Figure 6.6b,c represent AgO-P (with a plateau at ~1.3 G0) junctions. In addition to the AgO-P 

conductance plateau, an additional feature at ~0.3 G0 that can be ascribed to an evolution into 

AgO-S structure is also observed in Figure 6.6b (AgO-P to AgO-S scenario). However, in Figure 

6.6c the AgO-P junction is completely ruptured upon elongation (AgO-P to rupture). Therefore, 

traces such as those in Figure 6.6b and Figure 6.6c are included in AgO-P, but only traces such as 

Figure 6.6c are included in AgO-P to rupture scenario. Finally, Figure 6.6d shows a 

representative AgO-S junction, with a plateau at ~0.3 G0, where we also note the absence of any 

 

Figure 6.6. Additional sample traces. Sample traces showing the simultaneously measured conductance 

(red, left axis) and force (blue, right axis): Ag-SAC (a), AgO-P to AgO-S (b), AgO-P to rupture (c) and 

AgO-S (d). 

 



108 

 

conductance feature at 1 G0 corresponding to the Ag-SAC, which reflects the anti-correlation 

between 1 G0 and 0.4 G0 features observed in the cross-correlation analysis presented in the main 

text (Figure 6.2b). 

We follow the methods of Halbritter et al.[22, 23] to perform the conductance cross-

correlation analysis. We create the 2D cross-correlation histogram shown in Figure 6.2b within 

the main text with bins of size 0.01 G0 spanning 0 to 4 G0. The value of each bin in the 2D 

conductance is: 
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Eq. 6-1 

where the subscripts i, j identify the bin in the horizontal and vertical axes, while r is an index 

representing each trace included in the calculation. The ...  represent an average over all traces r 

and ( ) ( )i i r
N N r N r   . 
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7 
 Experimentally quantifying the binding energetics  

of atomic-size junctions 

The strength and characteristic length dependence of binding interactions at atomic scale is of 

fundamental importance to many areas of science. However, even with the tremendous advances 

in scanning probe microscopy, ab-initio calculations are typically relied upon to provide the 

quantitative insights about these energetics aspects. Here we present a general method to 

reconstruct binding energy curves of single atomic contacts and single-molecule junctions 

directly from experimental measurements, using a simplified model for their mechanics. We 

compare the results to density functional theory calculations and find striking agreement for each 

of the cases considered. Combined with the demonstrated feasibility of single-molecule 

experiment, this technique provides an approach to significantly expand the versatility of atomic 

force microscopy towards quantifying binding energetics at the atomic scale – without requiring 

vacuum conditions or low temperatures. 

Density functional theory calculations in this chapter were performed by Dr. Mark Hybertsen. 
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Atomic-scale metallic and metal-molecule interfaces impact electrical, optical, 

mechanical and thermal properties of materials, and can dominate the behavior of nanoscale 

structures. Scanning probe microscopy techniques have enabled experimental probing of such 

interfaces in single-molecule junctions, focusing on the measurement of their electronic 

transport[1-3] and mechanics[4-6]. In particular, simultaneous measurements of conductance and 

force in single-atomic contacts and single-molecule junctions[7-11] provide intricate details of 

the relationship between structure, mechanics and transport. Most frequently, the experiments 

use an atomic force microscope (AFM) cantilever tip to either measure forces directly, or 

calculate forces from shifts in the resonance characteristics of the AFM cantilever. However, 

converting this information into the underlying potential energy profile is non-trivial. Frequently, 

theoretical simulations are invoked to provide the quantitative insights about the energetics, 

through which the experimental force data is then interpreted a posteriori[6-10]. On the other 

hand, several new theoretical developments are underway to capture effects like dispersive 

interactions that are crucial to such diverse structures as metal-organic interfaces, biological soft-

matter and layered material like graphene[12-14]. However, for comparison to experiments these 

studies have had to rely on techniques like temperature programmed desorption which are only 

able to provide an estimate for the surface-averaged adsorption energy from ensembles of 

molecules. Therefore, there is a great need for general quantitative methods to directly obtain the 

potential energy profile from experimental data in single-molecule junctions, thereby enabling 

not only one-on-one comparison between theory and experiment, but also the benchmarking of 

new theoretical methods that are under development. 

Here we present a technique that uses simultaneously measured force and conductance of 

atomic-size junctions to quantitatively characterize the binding energetics of atomic-size 
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junctions. We first introduce an intuitive and general parameterized form for the potential energy 

profiles of atomic-size junctions, characterizing their mechanics as a function of junction 

elongation. We use this parameterized form to obtain both binding energies and length scales for 

Au and Ag single atomic contacts and Au-molecule-Au single-molecule junctions of amine- and 

methylthio- terminated alkanes as well as pyridyl- terminated aromatic molecules. Additionally, 

we are able to experimentally characterize the significant contribution of van der Waals 

interactions at the Au-molecule interface, which remain especially difficult to accurately capture 

in ab-initio calculations. In each case, we find excellent agreement with density functional theory 

simulations of junction elongation. Finally, we obtain details of symmetric and asymmetric bond 

stretching through the mechanical evolution of these structures under elongation, which had so 

far remained concealed in experimental distributions. In general, this technique can enable the 

quantitative exploration of diverse interfaces of fundamental importance to many disciplines at 

the single-atomic and molecular scale. 

7.1 Analytical model 

As an illustrative example of the mechanics of single-molecule junctions, Figure 7.1 shows 

density functional theory (DFT) calculations simulating a single-molecule junction elongation, 

where the molecule is 1,4-bis(methylthio)butane, abbreviated C4SMe[15]. The elongation of the 

junction is performed as an adiabatic trajectory simulation by moving the Au electrodes apart in 

increments of 0.1 Å and minimizing the total energy at each step. The curve in Figure 7.1a (black 

circles) shows the total potential energy (U) as a function of the junction elongation (x). At large 

elongations, the energy profile exhibits an asymptotic approach toward the ruptured structure (in 

this case, a structure with the top Au-S donor acceptor bonds broken, with the bottom bond 

retained). The minimum of this curve represents a completely relaxed structure, and the 
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difference between this minimum value and 

the asymptotic value is defined as the binding 

energy (Ebind) of the junction. In addition, a 

length scale (Lbind) can be defined as the 

distance along the junction elongation axis 

between the energy minimum and the 

inflection point of the potential energy profile. 

The inflection point can be more readily 

identified in the corresponding force (F) 

profile shown in Figure 7.1b (black squares). 

We note that for clarity, we use a convention 

that the tensile force is positive, such that 

F=dU/dx, therefore the inflection point 

corresponds to the maximum force (Fmax). 

Figure 7.1c shows the bond length of the top 

(red) and bottom (green) Au-S bonds, showing 

a dramatic increase in the top bond to the Au 

tip structure, while the bottom bond is 

minimally stretched. Snapshots of the junction 

structure at minimum energy, maximum force 

and rupture are also shown. 

Previous studies have attempted to model such potential energy curves using Morse 

 2( ) ~ (1 exp )bxU x a  , Lennard-Jones  12 6( ) ~ ( / ) ( / )U x a b x b x    or the so called universal 

 

Figure 7.1. DFT calculations and model fits to 

C4SMe single-molecule junction. (a) DFT 

calculated energies (open circles) as a functon of 

elongation, along with hybrid model fit (solid 

black line). (b) Numerical derivative of the fitted 

hybrid curve (solid line) quantitatively 

reproduces the features of the force from 

calculations (open squares). Fits to the DFT 

energies, and their respective derivatives for 

Morse (dashed red), Lennard-Jones (dashed 

green) and universal binding curve (dashed blue) 

potentials are also shown for comparison in b and 

c. (c) Bond lengths for the top (red downward 

triangles) and bottom (green upward triangles) S-

Au bonds from DFT, along with Energy 

minimized structures corresponding to minimum 

energy, maximum force and rupture. 
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binding curve model potential  ( ) ~ (1 )( )bxU x a bx e  [16-18]; each of these model potentials is 

by two parameters a,b that characterizes the scales for energy and length. We show the least-

squares fits to each of these model potentials to the potential energy profile, as well as their 

derivatives in Figure 7.1a,b (dashed red, green and blue, respectively). It is clearly seen that 

although these model potentials capture the general shape, they fail to quantitatively characterize 

the potential energy or the force profile calculated by the DFT calculations. This failure is not 

entirely surprising because the Morse and Lennard-Jones model potentials were created with an 

intent to model pairwise interactions[19, 20] and the universal binding curve was intended for 

bulk crystalline metallic interactions[21]. However, the mechanics of single atomic contacts and 

single-molecule junctions involves many-body interactions of the molecule and the several 

atoms on the electrodes in the immediate neighborhood of the junction. 

To capture the essential mechanics of 

single atomic contacts and single-molecule 

junctions in an intuitive and analytically 

tractable fashion, we propose a new 2-

parameter hybrid model potential (Figure 

7.2a) that combines a harmonic segment 
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region. Here, Kharm is a characteristic spring 

constant of the elastic junction elongation, U0 is a constant with dimensions of energy and D, r 

 

Figure 7.2. Hybrid model construction. (a) 

Separate harmonic (dashed black) and logistic 

(red) segments, showing key energy and length 

scale parameters. (b) The separate force profiles 

illustrate the linear elastic regime (dashed black) 

and rupture regime (red). The connection point is 

shown as a circle in both a and b. 
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are the characteristic energy and length parameters, respectively, for the logistic function that 

models the bond rupture regime. Boundary conditions are applied such that the model potential 

is continuous and differentiable at the connection point in the elastic regime. Here we have 

chosen this connection point to be at D/4 above the logistic tail (circles in Figure 7.2a,b); 

however any connection point before Fmax can be used without any significant changes. Simple 

relations connecting the binding energy and length scale to the maximum force and spring 

constant are immediately obtained by consistently solving the resulting set of implicit equations 

self-consistently: 

 2

max harm7.79 0.97bindE F K D   Eq. 7-1 

 
max harm10.66 3.43bindL F K r   Eq. 7-2 

where, for convenience, the units used for Ebind is eV, Lbind is Å, Fmax is nN and Kharm is N/m. 

Phenomenologically, the harmonic section describes the mechanics near the minimum energy 

(mirrored by the linear increase in the force up to the maximum force in Figure 7.2a) with an 

effective spring constant for the junction (Kharm), while the logistic segment models the distinctly 

different mechanics of the bond rupture (as seen in the rapid non-linear drop beyond the 

maximum force in Figure 7.2a). 

Figure 7.1a (solid line) presents the least squares fit of this hybrid model to the DFT 

calculated potential energy profile of C4SMe. First, the very good fit to the calculated energy 

(r.m.s. error between the DFT datapoints and the fit is 0.005 eV in this case) demonstrates the 

ability of the hybrid model, despite its simple construction using just two parameters 

corresponding to energy and length scales, to quantitatively capture all the essential features of 

the calculated potential energy profile. Secondly, Figure 7.1b (solid line) demonstrates the 

extremely good agreement between the derivative of the hybrid model fit and the DFT calculated 
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force profile. Finally, this hybrid model potential is similarly successful in describing all the 

atomic-size junctions we have considered in this study, beyond the illustrative example in Figure 

7.1a-c (see supporting information). The combination of these three factors makes the hybrid 

model an ideal candidate to base the reconstruction of potential energy profiles from single-

molecule force measurements. An added advantage of the hybrid model is that the stiffness in the 

elastic regime is constant, whereas it varies drastically at all locations in the Morse, Lennard-

Jones and universal binding energy model potentials (dashed red, green and blue in Figure 7.1b, 

respectively). 

7.2 Experimental and analysis methods 

Figure 7.3a presents a schematic of the experimental setup used to study the mechanics of 

various junctions in this study [9]. Here, the single atomic contacts and single-molecule junctions 

are formed between an Au coated mica substrate and the tip of an Au-coated AFM cantilever 

which represent the two metallic electrodes. Using the break-junction procedure, we repeatedly 

approach the tip and substrate until an Au atomic point contact of more than 5 G0 (G0=2e
2
/h, the 

quantum of conductance) is formed, and then retract them at a constant speed of 18 nm/s to 

elongate the junction. During the retraction, we simultaneously measure the force and 

conductance across the junction. As the two Au electrodes are pulled apart, the junction 

conductance decreases in steps of integer multiples of G0, representing the thinning of the Au 

point contact (Figure 7.3b,c). These steps in conductance are accompanied by saw-tooth features 

in force, which correspond to loading and rupture of the sequence of structures during 

elongation. Au single atomic contacts, characterized by a conductance of 1 G0, are frequently 

observed before the tip and substrate entirely lose contact. 
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Figure 7.3. Experimental setup and sample simultaneously measured conductance and force data. 
(a) Schematic of the experimental setup highlighting the relevant junction region. Typical simultaneously 

measured conductance (red, left axis) and force (blue, right axis) traces for an individual realization of Au 

single atomic contact (b) and single-molecule junction of C4SMe (c). (d) Chemical structures of the 

molecules with different linker groups used in this study. Histograms of rupture forces (e) and stiffness (f) 

for Au single atomic contacts (yellow) and C4SMe (black). Gaussian fits are overlaid as dashed lines. The 

peak loations in the fits correspond to <Fexp> and <Kexp>, as defined in the text, respectively. 

To study single-molecule junctions, a low concentration of molecules is deposited on the 

substrate either by thermally evaporating the target molecule or depositing a drop of a dilute 

solution (<1 mMol) onto the substrate[9, 15, 22]. In this study we present measurements of Au 

and Ag single atomic contacts as well as five different molecules (Figure 7.3d) which selectively 

bind to the Au electrodes to form Au-molecule-Au single-molecule junctions. C4SMe and C4A 

(1,4-butanediamine) are saturated four carbon chains with methylthio (SMe) and amine (NH2) 

terminations, whereas BDA (1,4-benzenediamine) is a NH2-terminated aromatic molecule. BP 

(4,4’-bipyridine) and BPE (1,2-bis(4-pyridyl)ethylene)) are heteroaromatic molecules that bind 

to gold through the pyridyl group. In the presence of these molecules, an additional conductance 
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plateau at a characteristic value (less than 1 G0) is frequently observed immediately after the Au 

single atomic contact ruptures during junction elongation, signifying the formation of a single-

molecule junction (Figure 7.3c). Junctions of BP and BPE are also interesting because their 

single-molecule junctions exhibit two distinct high (BPH or BPEH) and low (BPL or BPEL) 

conductance features. We have recently demonstrated that these features correspond to two 

distinct structures: while low conductance structures are analogous to C4A in their donor-

acceptor N-Au binding, the high conductance structures arise from significant van der Waals 

interactions between the molecule and the Au electrodes in addition to the donor-acceptor 

interactions[10]. In this study we separately analyze the mechanics of the high and low 

conducting features highlighting the significant contribution of van der Waals interactions to the 

binding energy, and thereby providing a reconstructed potential energy profile that will prove 

useful in benchmarking future DFT calculations that include dispersive interactions. 

We use the conductance features as fingerprints to identify Au and Ag single atomic 

contacts and Au-molecule-Au single-molecule junctions, and subsequently analyze the force data 

from each such experimental trace of the relevant junction (boxed regions in Figure 7.3b,c). 

Specifically, we obtain the maximum force sustained by the junction (drop in force at the 

location of junction rupture) and the junction stiffness (slope of the force trace during the 

elongation). The distribution of rupture forces and stiffness (Figure 7.3e,f) is Gaussian with a 

well-defined peak representing the most frequently measured rupture force (<Fexp>) and stiffness 

(<Kexp>), that are tabulated for each case in this study in Table 7.1. While previous studies have 

reported on the broad agreement between DFT derived and experimentally measured forces in 

several metallic single atomic contacts and single-molecule junctions[6-10], physically 

motivated arguments about the hybrid model potential enable us to extract the potential energy 
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profile directly from the experimentally measured mechanics. Firstly, we note that the energy 

scales of single atomic contacts and single-molecule junctions (~ 1 eV) are much larger than the 

thermal energy scale at room temperature (kB × 298 K ≈ 0.025 eV). Secondly, the junction is 

coupled to a stiff (50 N/m), bulk electrode represented by the cantilever on one side, along with 

an essentially infinitely stiff bulk electrode represented by the substrate on the other. In our 

experiment, we estimate the thermal fluctuations of the AFM cantilever to be ~ 10 pm (from 

spectral measurements of cantilever displacement) and the in-contact vibration spectrum of the 

cantilever yields an estimated mechanical noise of ~ 10 pm in our experimental setup, both much 

smaller than the length scale of the potential energy profiles of junctions considered in this study 

(~ 100 pm). The coupling of the single atomic contacts and single-molecule junctions to these 

bulk electrodes severely restrict the junction from exploring the potential landscape in directions 

other than that set by the elongation, further minimizing the probability of spontaneous junction 

rupture. Finally, only the few atoms in the immediate neighborhood of the junction contribute 

significantly to the mechanics of the single atomic contacts and single-molecule junctions. 

Therefore, the adiabatic trajectories simulated by DFT (with sufficient number of atoms in the 

vicinity of the junction allowed to relax, such as in Figure 7.1) can be expected to reasonably 

capture the mechanical properties of the experiment. 

7.3 Results and discussion 

To obtain the binding energy from the experimental data, we first substitute <Fexp> → 

Fmax, and <Kexp> → Kharm, into Eq. 7-1. These substitutions are motivated by the above 

arguments, implying that, on average, the junctions rupture close to the adiabatic maximum 

force[23, 24]. As an illustration, for Au single atomic contacts we obtain a rupture force of 1.5 

nN and stiffness of 7.7 N/m based on 8100 individual realizations, in excellent agreement with 
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previous reports[7]. Using Eq. 6-1, we obtain a binding energy of 2.28 ± 0.06 eV from the 

experimental data, in remarkable agreement with DFT calculated values for Au linear chains of 

~2.2 eV[24, 25]  as well as the bond dissociation energy of 2.29 eV for the Au-Au bond[26]. For 

Ag single atomic contacts, we obtain a lower binding energy (0.91 ± 0.10 eV), in qualitative 

agreement with the lower binding energy predicted in theoretical results ~1.5 eV[24]. 

Quantitative agreement might be lacking for Ag either owing to complex atomic-scale structures 

in the case of Ag single atomic contacts or due to the contamination of the Ag electrodes by O 

impurities in our room temperature, ambient measurements[27]. 

Table 7.1. Mean values of experimentally measured mean rupture force and stiffness; binding 

energies (Ebind) and length scales (Lbind) obtained from experiments and comparison to DFT. Errors 

in the experimental Ebind and Lbind are computed from standard errors of Fexp and Kexp experimental 

distributions. 

Junction 

Experimental data 
Binding Energy 

(Ebind) 

Length Scale 

(Lbind) 

n 
<Fexp> 

(N) 

<Kexp> 

(N/m) 

DFT 
a
 

(eV) 

Expt. 

(eV) 

DFT 
a
 

(Å) 

Expt.
 

(Å) 

Au-Au 8100 1.50±0.01 7.7±0.1 ~2.2 2.28±.06 - 2.08±.04 

Ag-Ag 955 0.95±0.02 7.7±0.5 ~1.5 0.91±.10 - 1.32±.11 

Au-C4SMe 5132 0.77±0.01 5.3±0.1 0.68 0.87±.04 1.3 1.55±.05 

Au-C4A 1100 0.62±0.01 3.9±0.3 0.65 0.77±.08 1.2 1.69±.16 

Au-BDA 604 0.45±0.02 2.6±0.4 0.37 0.61±.15 1.1 1.85±.37 

Au-BPL 7763 0.88±0.01 7.0±0.1 0.81 0.86±.03 1.2 1.34±.03 

Au-BPH 4118 1.43±0.01 10.3±0.2 1.34
b
 1.55±.05 1.1

b
 1.48±.04 

Au-BPEL 496 0.83±0.02 7.9±0.3 - 0.68±.06 - 1.12±.07 

Au-BPEH 529 1.88±0.03 14.5±0.3 - 1.90±.10 - 1.38±.05 

a – DFT values are from Refs [9, 10, 15] 

b – For calculations involving BPH junctions, a molecule bound to a single electrode was used 

because of computational constraints introduced by a non-trivial electrode structure. In all other 

cases in this table, the calculations were performed with junction structures consisting of two 

electrodes. 
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In contrast to the calculations of single atomic contacts, we have previously published DFT 

results for single-molecule junctions formed by various molecules using DFT calculations with 

PBE using the projector augmented wave approach and the generalized gradient approximation 

(GGA) of Perdew, Burke, and Ernzerhof (PBE) for the exchange-correlation density functional 

[9, 15]. Table 7.1 summarizes the binding energies for all the junctions measured in this study 

and compares it with calculated values. We observe that the extracted binding energies for the 

single-molecule junctions are in excellent agreement in each case with our previously published 

DFT calculations. Indeed, the experimental values highlight the slight underestimation of DFT 

binding energies (~0.15 eV on average for C4SMe, C4A, BDA and BPL single-molecule 

junctions which bind through donor-acceptor interactions) using the GGA functional[28]. 

Importantly, this method yields binding energies for both the high and low conducting junctions 

of molecules BP and BPE, showing that the high conducting junctions possessing significantly 

larger binding energy. For the high conducting BP junctions, our experimental result is in 

quantitative agreement with DFT calculations that included van der Waals interactions based on 

the DFT-D2 approach[29] in addition to the binding energy from the conventional GGA/PBE 

functional[10]. Finally, using Eq. 7-2 we can also extract the length scale of the binding energy 

curve that is important in characterizing the full mechanics at the atomic-scale. The Lbind values 

for each type of junction measured in this study is tabulated in Table 7.1. 

In summary, we have presented a new model potential that quantitatively captures the 

many-body mechanics of atomic-size junctions. We utilize this model to reconstruct potential 

energy profiles of several single atomic contacts and single-molecule junctions from 

experimental force measurement data. We obtain remarkable agreement with DFT calculations, 

highlighting the efficacy of this technique. This technique can become a powerful general 
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Figure 7.4. Fits to DFT simulations of Au-molecule-Au junctions with nitrogen terminated 

molecules. (a) Energies calculated by DFT adiabatic trajectory simulations (open symbols), and fits to the 

hybrid model potential (solid lines). (b) DFT calculated forces (open symbols) and derivative of the 

hybrid model potential (solid lines). The DFT calculation for BPH included van der Waals corrections 

using the DFT-D2 approach, but with a single Au electrode due to computational constraints. 

 

method to extract energetic information from single-molecule measurements carried out under 

various environmental conditions. In the future, this technique can also be extended to obtain 

detailed mechanical details for individual measurements, giving powerful new insight into the 

energetics of atomic-scale junctions. 

7.4 Supporting information 

The DFT based adiabatic trajectory calculations were performed using the generalized 

gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE)[30] implemented in the 

VASP package[31]. In addition, for the van der Waals calculations for BP SMJs, the DFT-D2 

method of Grimme [29] was used. The theoretical results for C4SMe, C4A, BDA and BP have 

been presented previously[9, 10, 15]. Figure 7.4a presents the fits of the model hybrid energy 

profile to the DFT calculated energies at different values of the junction elongation for C4A, 

BDA, BPL and BPH SMJs. In addition, the derivative of the hybrid potential is compared to the 
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forces obtained from DFT calculations (Figure 7.4b). Both the energies and forces calculated by 

the DFT are well-captured by the hybrid model in general, but the agreement in the forces for 

BPH SMJs is poor beyond Fmax. This could be due to the fact that close to Fmax, the BP molecule 

rapidly loses its van der Waals binding energy contribution, leading to more complex potential 

energy variation that the donor-acceptor bonded junctions[10]. However, more work is needed to 

ascertain if this discrepancy is as artifact of the DFT-D2 approach. 
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8 
 Conclusions and outlook 

The experimental setup and analysis techniques outlined in this thesis have proven to be effective 

in probing a variety of important questions surrounding the structure-function relationships at the 

atomic scale. These include the quantitative studies of rupture forces across a wide variety of 

molecular backbones and chemical linker groups and even atomic impurities in silver atomic 

contacts, measurement of van der Waals forces at the metal-molecule interface, demonstration of 

destructive quantum interference and the reconstruction of binding energy profiles from 

experiments. Other than the improvement of instrumentation capabilities and optimization of 

signal-to-noise ratios, several interesting questions appear to be addressable in the near future 

using simultaneous measurements of force and conductance across single molecule junctions. 

Ultimately, it remains to be seen if we can progress from merely studying physical processes, to 

actively manipulating matter at the atomic scale to perform useful functions. 
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8.1 Conclusions 

We have presented our studies of atomic-scale junctions through the simultaneous 

measurements of force and conductance. These experimental and analysis techniques have 

yielded a wealth of information that highlights the relationships between chemical structure, 

junction mechanics, electronic transport and energetics, stemming from their underlying 

electronic structure. While the motivations for such studies in the past came from the drive to 

build-up new electronic devices and architectures starting from the atomic scale, our explorations 

are indicating new directions for research by probing multiple properties of these junctions. 

Starting from a discussion of the experimental setup, measurement protocols and statistical 

analysis techniques, we proceeded to see their combined application in correlating the chemical 

structure of various molecules with their junction rupture forces. Then we used systematic 

measurements of conductance in junctions formed by a series of carboxyl linked molecules in 

combination with force measurements to estimate their stability. This led us to an understanding 

of the binding mechanism for carboxyl linker groups, which paves the way for future studies that 

can take advantage of the chemical modifications achievable through the carboxyl group. We 

then applied force-based analysis techniques to dissect the junction mechanics, stemming mostly 

from the contact mechanics at the linker-gold bond, from the signatures of destructive quantum 

interference in electronic transport of single-molecule junctions of meta- terminated molecules. 

Here we found that by using specially designed molecules, we can retain the mechanical stability 

of the contacts, while drastically changing the electronic transport properties of single-molecule 

junctions. The lessons from this study have already motivated another series of experiments to 

probe electronic transport in the absence of specific interactions. 
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Going beyond characterizations of rupture force alone, we demonstrated the first 

quantitative measurement of van der Waals forces at the metal-molecule interface at the single-

molecule level through detailed analyses of forces, stiffnesses and structural rearrangements. Van 

der Waals forces are a manifestation of electronic correlations that are ubiquitous in nature and 

engineered material, but remains challenging to estimate either through experiment or theory. 

Our combined experimental and theoretical approach to measure these forces can provide a new 

understanding of important relationships between electronic structure and interfacial mechanics. 

We then extended these methods to silver atomic-scale junctions, where we used relationships 

between conductance and structure were exploited to distinguish between pristine and oxygen 

contaminated silver junctions. Once more, simple explanations emerged in the correlations 

between structural motifs at the atomic scale, and their conductance and mechanical evolution. 

Finally, we proposed a simplified analytical model that captures the essence of the many-

body mechanics occurring in the vicinity of the junction in order to quantitatively extract the 

energies and length scales of the relevant binding energy profiles. So far, the quantitative 

estimates for binding energy from experiments were largely limited to course-grained methods 

such as temperature programmed desorption, while theoretical calculations provided reliable 

estimates only in relatively simple bonding scenarios. Our new technique presents a universal 

way to obtain binding energy profiles directly from experiments, and can therefore be useful in 

benchmarking future theoretical calculations as well. 

8.2 Outlook 

One of the important challenges that we overcame in order to enable our experiments was 

the dramatically improved force resolution that we achieved through careful optimization of the 
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instrumentation. However, significant improvements are still possible, as the fundamental noise 

limit (thermal noise of the AFM cantilever) have not yet been reached. Further optimization of 

the laser optics, combined with customized beam deflection detection and pre-amplifier based 

electronic amplification of the photodetector signal to achieve thermal-limited performance 

could lower the force noise from ~ 0.1 nN currently, to ~ 0.03 nN. There is also scope for adding 

other measurement capabilities, in addition to the conductance and force capabilities, especially 

for optical probing, because the gold-coated AFM cantilever presents an ideal opportunity to 

utilize local plasmonic resonances in order to enhance the optical coupling to single molecules. 

While the modifications are challenging, they will open the door for many interesting studies 

where mechanics can be used to alter not only the electronic transport but potentially the optical 

properties as well. 

Another avenue for future work lies in the development of new analysis techniques to 

extract more information from both existing and future datasets. This is because, in our studies 

so far, we have mostly explored correlations between different properties that have been 

averaged over thousands of individual realizations of atomic-scale junctions. While this was 

thought to be necessary to obtain statistically relevant comparisons, we are now at a stage in the 

experimental and analytical ability that it is possible to correlate not only averaged properties, 

but also obtain statistically robust cross-correlations between different properties of individual 

junctions, such as their conductance, rupture force, stiffness and the variability in each of these 

parameters on a junction-by-junction basis. Finally, an important prospect well-suited for our 

AFM experiments is to explore mechano-chemistry, where forces induce structural changes 

detectable by changes in electronic transport properties. 
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