23 research outputs found

    Adenosine A1 receptor: Functional receptor-receptor interactions in the brain

    Get PDF
    Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders

    Control of cellular Bcl-xL levels by deamidation-regulated degradation.

    Get PDF
    The cellular concentration of Bcl-xL is among the most important determinants of treatment response and overall prognosis in a broad range of tumors as well as an important determinant of the cellular response to several forms of tissue injury. We and others have previously shown that human Bcl-xL undergoes deamidation at two asparaginyl residues and that DNA-damaging antineoplastic agents as well as other stimuli can increase the rate of deamidation. Deamidation results in the replacement of asparginyl residues with aspartyl or isoaspartyl residues. Thus deamidation, like phosphorylation, introduces a negative charge into proteins. Here we show that the level of human Bcl-xL is constantly modulated by deamidation because deamidation, like phosphorylation in other proteins, activates a conditional PEST sequence to target Bcl-xL for degradation. Additionally, we show that degradation of deamidated Bcl-xL is mediated at least in part by calpain. Notably, we present sequence and biochemical data that suggest that deamidation has been conserved from the simplest extant metazoans through the human form of Bcl-xL, underscoring its importance in Bcl-xL regulation. Our findings strongly suggest that deamidation-regulated Bcl-xL degradation is an important component of the cellular rheostat that determines susceptibility to DNA-damaging agents and other death stimuli
    corecore