6,110 research outputs found
Recommended from our members
Financial crisis, bank acquisitions, and value creation: The case of bank mergers for the past five years
This paper will focus on the bank acquisitions of the United States and Europe. It will specify the most highly regarded cause of the financial crisis and consider what all the components might explain about perception of consumers in the United States and in Europe. This paper also uses a commonly used event study methodology to understand the market reaction in these bank acquisition announcements
Enhancement of Gap Junction Function During Acute Myocardial Infarction Modifies Healing and Reduces Late Ventricular Arrhythmia Susceptibility
Objectives: To investigate the effects of enhancing gap junction (GJ) coupling during acute myocardial infarction (MI) on the healed infarct scar morphology and late post-MI arrhythmia susceptibility. Background: Increased heterogeneity of myocardial scarring after MI is associated with greater arrhythmia susceptibility. We hypothesized that short-term enhancement of GJ coupling during acute MI can produce more homogeneous infarct scars, reducing late susceptibility to post-MI arrhythmias. Methods: Following arrhythmic characterisation of the rat 4-week post-MI model (n=24), a further 27 Sprague-Dawley rats were randomised to receive rotigaptide to enhance GJ coupling (n=13) or saline control (n=14) by osmotic minipump immediately prior to, and for the first 7 days following surgical MI. At 4 weeks post-MI, hearts were explanted for ex vivo programmed electrical stimulation (PES) and optical mapping. Heterogeneity of infarct border zone (IBZ) scarring was quantified by histomorphometry. Results: Despite no detectable difference in infarct size at 4 weeks post-MI, rotigaptide-treated hearts had reduced arrhythmia susceptibility during PES (Inducibility score: rotigaptide 2.40.8, control 5.00.6, p=0.02) and less heterogeneous IBZ scarring (standard deviation of IBZ Complexity Score: rotigaptide 1.10.1, control 1.40.1, p=0.04), associated with an improvement in IBZ conduction velocity (rotigaptide 43.13.4 cm/s, control 34.82.0 cm/s, p=0.04). Conclusions: Enhancement of GJ coupling for only 7 days at the time of acute MI produced more homogeneous IBZ scarring and reduced arrhythmia susceptibility at 4 weeks post-MI. Short-term GJ modulation at the time of MI may represent a novel treatment strategy to modify the healed infarct scar morphology and reduce late post-MI arrhythmic risk
Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils
© 2016 Elsevier Ltd. Ecophysiological studies of remnant woodlands in saline environments are scarce. We investigated seasonal fluctuations in soil water and salinity together with leaf and branch traits (area-based maximum assimilation (Amax), foliar nitrogen, specific leaf area (SLA) and Huber value (Hv)) and sap velocities of Eucalyptus macrorhyncha at four semi-arid sites in south-eastern Australia. Summer and winter soil salinities (10 cm depth) were 15-35 dS m-1 and 8-10 dS m-1 respectively. Gravimetric soil water content in the upper 20 cm was 2-5% in summer and 7-23% in winter, resulting in a significant inverse correlation between soil water and soil salinity. We found significant correlations between soil conditions and plant traits and function across seasons. Soil water content was significantly correlated with foliar N, SLA, Hv and maximum sap velocity while soil salinity was significantly correlated with Amax, Hv and maximum sap velocity. Correlations indicate co-variation of soil conditions and plant physiology in response to environmental conditions such as solar radiation and vapour pressure deficit (D). E. macrorhyncha tolerates the dual stresses of high salinity and low soil water during summer. While the plants appeared unhealthy, our data show that remnant vegetation can remain functional even in close proximity to saline scalds
Analysis of admixed CeO2 nanoparticles via TEM and x-ray diffraction techniques
The techniques used to identify nanoparticle size and shape characteristics are o vital importance in the developemnt of functional nanoparticles. Each technique offers different advantages: this work compares the two techniques of transmission electron microscopy (TEM) and x-ray diffraction (XRD) analysis by charactering CeO2 nanoparticle specimens. Whole Powder Pattern Modelling (WPPM) is used to quantify the specimens dislocations and size characteristics from XRD data. Using admixed samples we test and extend the techniques. We show that XRD accurately characterises small crystallite distributions and that larger crystallite distributions necessitate further investigation
- …