45 research outputs found

    Central Role of the Holliday Junction Helicase RuvAB in vlsE Recombination and Infectivity of Borrelia burgdorferi

    Get PDF
    Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA), BB0022 (ruvB), BB0797 (mutS), and BB0098 (mutS-II), showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP) screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid) mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the ‘parental’ vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together these studies provide the first examples of trans-acting factors involved in vlsE recombination

    Health and life insurance as an alternative to malpractice tort law

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tort law has legitimate social purposes of deterrence, punishment and compensation, but medical tort law does none of these well. Tort law could be counterproductive in medicine, encouraging costly defensive practices that harm some patients, restricting access to care in some settings and discouraging innovation.</p> <p>Discussion</p> <p>Patients might be better served by purchasing combined health and life insurance policies and waiving their right to pursue malpractice claims. The combined policy should encourage the insurer to profit by inexpensively delaying policyholders' deaths. A health and life insurer would attempt to minimize mortal risks to policyholders from any cause, including medical mistakes and could therefore pursue systematic quality improvement efforts. If policyholders trust the insurer to seek, develop and reward genuinely effective care; identify, deter and remediate poor care; and compensate survivors through the no-fault process of paying life insurance benefits, then tort law is largely redundant and the right to sue may be waived. If expensive defensive medicine can be avoided, that savings alone could pay for fairly large life insurance policies.</p> <p>Summary</p> <p>Insurers are maligned largely because of their logical response to incentives that are misaligned with the interests of patients and physicians in the United States. Patient, provider and insurer incentives could be realigned by combining health and life insurance, allowing the insurer to use its considerable information access and analytic power to improve patient care. This arrangement would address the social goals of malpractice torts, so that policyholders could rationally waive their right to sue.</p

    Eubacterial SpoVG Homologs Constitute a New Family of Site-Specific DNA-Binding Proteins

    Get PDF
    A site-specific DNA-binding protein was purified from Borrelia burgdorferi cytoplasmic extracts, and determined to be a member of the highly conserved SpoVG family. This is the first time a function has been attributed to any of these ubiquitous bacterial proteins. Further investigations into SpoVG orthologues indicated that the Staphylococcus aureus protein also binds DNA, but interacts preferentially with a distinct nucleic acid sequence. Site-directed mutagenesis and domain swapping between the S. aureus and B. burgdorferi proteins identified that a 6-residue stretch of the SpoVG α-helix contributes to DNA sequence specificity. Two additional, highly conserved amino acid residues on an adjacent β-sheet are essential for DNA-binding, apparently by contacts with the DNA phosphate backbone. Results of these studies thus identified a novel family of bacterial DNA-binding proteins, developed a model of SpoVG-DNA interactions, and provide direction for future functional studies on these wide-spread proteins
    corecore