568 research outputs found

    Social Network Games with Obligatory Product Selection

    Get PDF
    Recently, Apt and Markakis introduced a model for product adoption in social networks with multiple products, where the agents, influenced by their neighbours, can adopt one out of several alternatives (products). To analyze these networks we introduce social network games in which product adoption is obligatory. We show that when the underlying graph is a simple cycle, there is a polynomial time algorithm allowing us to determine whether the game has a Nash equilibrium. In contrast, in the arbitrary case this problem is NP-complete. We also show that the problem of determining whether the game is weakly acyclic is co-NP hard. Using these games we analyze various types of paradoxes that can arise in the considered networks. One of them corresponds to the well-known Braess paradox in congestion games. In particular, we show that social networks exist with the property that by adding an additional product to a specific node, the choices of the nodes will unavoidably evolve in such a way that everybody is strictly worse off.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Proof-theoretic Analysis of Rationality for Strategic Games with Arbitrary Strategy Sets

    Full text link
    In the context of strategic games, we provide an axiomatic proof of the statement Common knowledge of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies. Rationality here means playing only strategies one believes to be best responses. This involves looking at two formal languages. One is first-order, and is used to formalise optimality conditions, like avoiding strictly dominated strategies, or playing a best response. The other is a modal fixpoint language with expressions for optimality, rationality and belief. Fixpoints are used to form expressions for common belief and for iterated elimination of non-optimal strategies.Comment: 16 pages, Proc. 11th International Workshop on Computational Logic in Multi-Agent Systems (CLIMA XI). To appea

    Semantics of Input-Consuming Logic Programs

    Get PDF
    Input-consuming programs are logic programs with an additional restriction on the selectability (actually, on the resolvability) of atoms. this class of programs arguably allows to model logic programs employing a dynamic selection rule and constructs such as delay declarations: as shown also in [5], a large number of them are actually input-consuming. \ud in this paper we show that - under some syntactic restrictions - the tex2html_wrap_inline117-semantics of a program is correct and fully abstract also for input-consuming programs. this allows us to conclude that for a large class of programs employing delay declarations there exists a model-theoretic semantics which is equivalent to the operational one

    A static analysis of VSP programs

    Get PDF

    Arrays, bounded quantification and iteration in logic and constraint logic programming

    Get PDF
    We claim that programming within the logic programming paradigm suffers from lack of attention given to iteration and arrays. To convince the reader about their merits we present several examples of logic and constraint logic programs which use iteration and arrays instead of explicit recursion and lists. These programs are substantially simpler than their counterparts written in the conventional way. They are easier to write and to understand, are guaranteed to terminate and their declarative character makes it simpler to argue about their corr
    corecore