
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Arrays, bounded quantification and iteration in logic and constraint
logic programming

K.R. Apt

Computer Science/Department of Software Technology

CS-R9543 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301635164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9543
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Arrays� Bounded Quanti�cation and Iteration in Logic and

Constraint Logic Programming

Krzysztof R� Apt

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

and

Department of Mathematics and Computer Science

University of Amsterdam� Plantage Muidergracht 	�

���
 TV Amsterdam� The Netherlands

Abstract

We claim that programming within the logic programming paradigm su�ers from lack of
attention given to iteration and arrays� To convince the reader about their merits we present
several examples of logic and constraint logic programs which use iteration and arrays in�
stead of explicit recursion and lists� These programs are substantially simpler than their
counterparts written in the conventional way� They are easier to write and to understand�
are guaranteed to terminate and their declarative character makes it simpler to argue about
their correctness� Iteration is implemented by means of bounded quanti�cation�

Note� This paper will appear as an invited lecture in� Proc� of the �		
 Joint Conference
on Declarative Programming �GULP�PRODE �	

� M� Alpuente Frasnedo and M� I� Sessa�
editors� University of Salerno� Italy�

AMS Subject Classi�cation ������� ��Q��� ��T�
�
CR Subject Classi�cation ������� D����� D����� F����� I�����
Keywords and Phrases� arrays� bounded quanti�ers� iteration� logic programming� con�
straints� termination�

� Introduction

Any systematic course on programming in the imperative style �say using Pascal�� �rst con�
centrates on iteration constructs �say while or repeat� and only later deals with recursion�
Further� the data structures are explained �rst by dealing with the static data structures �like
arrays and records� and only later with the dynamic data structures �which are constructed by
means of pointers��

In the logic programming framework the distinctions between iteration and recursion� and
between static and dynamic data structures are lost� One shows that recursion is powerful
enough to simulate iteration and rediscovers the latter by identifying it with tail recursion�
Arrays do not exist� In contrast� records can be modelled by terms� and dynamic data structures
can be de�ned by means of clauses� in a recursive fashion �with the exception of lists for which
in Prolog there is support in the form of built�ins and a more friendly notation��

�

One of the side e	ects of this approach to programming is that one often uses a sledgehammer
to cut the top of an egg� Even worse� simple problems have unnecessarily complex and clumsy
solutions in which recursion is used when a much easier solution using iteration exists� is simpler
to write and understand� and
 perhaps even more important
 is closer to the original
speci�cation�

In this paper we would like to propose an alternative approach to programming in logic
programming and in constraint logic programming
 an approach in which adequate stress is
put on the use of arrays and iteration� Because iteration can be expressed by means of bounded
quanti�cation� a purely logical construct� the logic programming paradigm is not �violated��
On the contrary� it is enriched� clari�ed and better tailored for the programming needs�

Arrays are especially natural when dealing with vectors and matrices� The use of dynamic
data structures to write programs dealing with such objects is unnatural� We shall try to
illustrate this point by presenting particularly simple solutions to problems such as the n�queens
problem� the knight
s tour� the map colouring problem� the cutting stock problem� and other
problems involving backtracking�

Further� by adding to the language operators which allow us to express optimization� i�e�
minimization and maximization� we can easily write programs for various optimization problems�

For pedagogical reasons we limit our attention to programs that involve iteration and opti�
mization constructs� Of course� explicit recursion has its place both in logic programming and
in constraint logic programming� One of the main purposes of this paper is to illustrate how
much can be achieved without it�

In the programs considered in this paper recursion is hidden in the implementation of the
bounded quan�ers and this use of recursion is guaranteed to terminate� Consequently� these
programs always terminate� As termination is one of the major concerns in the case of logic
programming� from the correctness point of view it is better to use iteration instead of recursion�
when a choice arises� Also� iteration can be implemented more e�ciently than recursion �see
Barklund and Bevemyr �BB��� for an explanation how to extend WAM to implement iteration
in Prolog��

This work has a preliminary character and can be seen as an attempt to identify the right
linguistic concepts which simplify programming in the logic programming paradigm� When
presenting this view of programming within the logic programming paradigm we were very
much in�uenced by the publications of Barklund and Millroth �BM���� Voronkov �Vor��� and
Klu�zniak �Klu���� In fact� the constructs whose use we advocate� i�e� bounded quanti�cation
and arrays� were already proposed in these papers� The only� possibly new� contribution of this
paper is a suggestion to include these constructs in constraint logic programming�

� Bounded Quanti�ers

Bounded quanti�ers in logic programming were introduced in Klu�zniak �Klu��� and are thor�
oughly discussed in Voronkov �Vor��� �where also earlier references in Russian are given�� They
are also used in Klu�zniak �Klu��� �see also Klu�zniak and Mi�lkowska �KM���� in a speci�cation
language SPILL�� in which executable speci�cations can be written in the logic programming
style�

Following Voronkov �Vor��� we write them as �X � L Q �the bounded existential quanti�er�
and �X � L Q �the bounded universal quanti�er�� where L is a list and Q a query� and de�ne
them as follows�

�

�X � �Y � Ys� Q � QfX�Yg�
�X � �Y � Ys� Q � �X � Ys Q�

�X � �Y � Ys� Q � QfX�Yg� �X � Ys Q�

�X � �� Q�

Voronkov �Vor��� also discusses two other bounded quanti�ers� written as �X � L Q and �X
� L Q� where X � L is to be read �X is a su�x of L�� which we do not consider here�

To some extent the use of bounded quanti�ers allows us to introduce in some compact
form the �and� and the �or� branching within the program computations� This reveals some
connections with the approach of Harel �Har���� though we believe that the expressiveness
and ease of programming within the logic programming paradigm makes Harel
s programming
proposal obsolete�

Even without the use of arrays the gain in expressiveness achieved by means of bounded
quanti�ers is quite spectacular� Consider for example the following problem�

Problem � Write a program which tests whether one list is a subset of another�

Solution

subset�Xs� Ys	 � �X � Xs �Y � Ys X
 Y�

Several other examples can be found in Voronkov �Vor���� Here we content ourselves with
just one more� in which we use delay declarations very much like in modern versions of Prolog�
�for example in ECLiPSe� or the programming language G�odel of Hill and Lloyd �HL�����

Problem � Write a program checking the satis�ability of a Boolean formula�

Solution We assume here that the input Boolean formula is written using Prolog notation� so
for example �� X� Y	 � Z stands for �� X � Y	 � Z�

sat�X	 � X� generate�X	�

generate�X	 � vars�X� Ls	� �Y � Ls �Z � �true� fail� Y
 Z�

DELAY X UNTIL nonvar�X	�

Comments This remarkably short program uses meta�variables and a mild extension of the
delay declarations to meta�variables� The delay declaration used here delays any call to a meta�
variable until it becomes instantiated� vars�t� Ls	 for a term t computes in Ls the list of the
variables occurring in t� Its de�nition is omitted� vars�X� Ls	 can be easily implemented using
the var�X	 and univ built�in
s of Prolog� true and fail are Prolog
s built�in
s�

In this program it is not advisable to delay the calls to negative literals until they become
ground� Such a delay would reduce checking for satis�ability of subformulas which begin with
the negation sign to a naive generate and test method�

Even though this program shows the power of Prolog� we prefer to take another course and
use types instead of exploring extensions of Prolog� which is an untyped language�

�

� Arrays and Bounded Quanti�ers in Logic Programming

Arrays in logic programming were introduced in Eriksson and Rayner �ER���� Barklund and
Bevemyr �BB��� proposed to extend Prolog with arrays and studied their use in conjunction
with the bounded quanti�cation� In our opinion the resulting extension �unavoidably� su	ers
from the fact that Prolog is an untyped language� In Klu�zniak �Klu��� arrays are present� as
well� where they are called indexable sequences�

More recently� Barklund and Hill �BH��� proposed to add arrays and restricted quanti�cation�
a generalization of the bounded quanti�cation� to G�odel� the programming language which does
use types�

In the programs below we use bounded quanti�cation� arrays and type declarations� The use
of bounded quanti�ers and arrays makes them simpler� more readable and closer to speci�cations�
We declare constants� types� variables and relations in a style borrowed from the programming
language Pascal� The choice of notation is preliminary�

We begin with two introductory examples�

Problem � Check whether a given sequence of ��� integers is ordered�

Solution

const n
 �

�

rel ordered� array ����n� of integer�

ordered�A	 � �I � ����n��� A�I� � A�I����

Comments This example shows that within the array subscripts terms should be evaluated�
so that we can identify ��� with � etc� More precisely� ��� should be viewed here as an external
procedure in the sense of Ma�luszy�nski et al� �MBB�����

Note that the bounded universal quanti�er �I � ����n� does not correspond to the imper�
ative for i�
� to n loop� The former is executed as long as a failure does not arise� i�e� up
to n times� whereas the latter is executed precisely n times� The programming construct �I �
����n� Q actually corresponds to the construct

for i��� to n do if � Q then

begin

failure �� true� exit

end

which is clumsy and unnatural within the imperative programming paradigm�
�Feliks Klu�zniak suggested to us the following� slightly more natural interpretation of �I �

����n� Q�

i����
while i � n cand Q do i��i���
failure �� i � n�

where cand is the �conditional and� connective �see Gries �Gri��� pages ��!�����

Problem � Generate all members of a given sequence of ��� elements�

�

Solution

const n
 �

�

rel member� ��� array ����n� of �	�

member�X� Y	 � �I � ����n� X
 Y�I��

Comments Here� Y is the given sequence� �"� stands for an unknown type� �
� is a built�in
declared as

rel
� ��� �	�

DELAY X
 Y UNTIL known�X	 � known�Y	�

In other words� �
� is de�ned on any type and the calls to �
� are delayed until the value of
one of its arguments is known� i�e� uniquely determined� If the values of both arguments are
known� then it behaves like the usual comparison relation of Prolog and if the value of only
one argument is known and the other is a� possibly subscripted� variable� then �
� behaves like
the is built�in of Prolog� The case when one of the arguments is known and the other is not a
variable does not arise here� known�X	 is a built�in which holds when its argument is uniquely
determined� It corresponds to ground�X	 in Prolog�

This example shows the usefulness of polymorphic types in the presence of arrays� The
bounded existential quanti�er �I � ����n� implements backtracking and has no counterpart
within the imperative programming paradigm�

Problem � Arrange three �
s� three �
s� ���� three �
s in sequence so that for all i � ��� �� there
are exactly i numbers between successive occurrences of i �see Coelho and Cotta �CC��� page
������

Solution

rel sequence� array ������� of �������

sequence�A	 � �I � ������ �J � ��������I�

�A�J�
 I� A�J�I���
 I� A�J��I���
 I		�

Comments The range J � ��������I� comes from the requirement that the indices J�

J�I��� J��I�� should lie within �������� Thus J��I�� � ��� that is J � ����I�

Problem � Generate all permutations of a given sequence of ��� elements�

First we provide a solution for the case when there are no repeated elements in the sequence�

Solution �

const n
 �

�

rel permutation� �array ����n� of �� array ����n� of �	�

permutation�X� Y	 � �I � ����n� �J � ����n� Y�J�
 X�I��

Here� X is the given sequence� Alternatively�

permutation�X� Y	 � �I � ����n� member�X�I�� Y	�

�

Comments Note the similarity in the structure between this program and the one that solves
problem �� This program is incorrect when the sequence contains repeated elements� For
example for n
 � and X�

�
��� Y�

���� is a possible answer�

To deal with the general case we use local array declarations and reuse the above program�

Solution �

const n
 �

�

rel permutation� �array ����n� of �� array ����n� of �	�

permutation�X� Y	 �
var A� array ����n� of ����n��

�I � ����n� �J � ����n� A�J�
 I�

�I � ����n� Y�I�
 X�A�I���

Comments This solution states that A is an onto function from ����n� to ����n� and that
a permution of a sequence of n elements is obtained by applying the function A to its indices�

Next� consider two well�known chess puzzles�

Problem � Place � queens on the chess board so that they do not check each other�

First� we provide a naive generate and test solution� It will be of use in the next section�

Solution �

const n
 ��

type board� array ����n� of ����n��

rel queens� generate� safe� board�

queens�X	 � generate�X	� safe�X	�

generate�X	 � �I � ����n� �J � ����n� X�I�
 J�

safe�X	 � �I � ����n� �J � �I����n�

�X�I� 	� X�J�� X�I� 	� X�J� � �J�I	� X�I� 	� X�J� � �I�J		�

Comments To improve readability board is explicitly declared here as a type� Declaratively�
this program states the conditions which should be satis�ed by the values chosen for the queens�
�	�� is a built�in declared as

rel 	�� ��� �	�

In this section we use it only to compare terms with known values� Then �	�� behaves like the
usual arithmetic inequality relation of Prolog� A more general usage of � 	�� will be explained in
the next section�

Next� we give a solution which involves backtracking�

Solution �

const n
 ��

type board� array ����n� of ����n��

rel queens� board�

queens�X	 � �J � ����n� �K � ����n�

�X�J�
 K�

�I � ����J���

�X�I� 	� X�J�� X�I� 	� X�J� � �J�I	� X�I� 	� X�J� � �I�J			�

Comments Declaratively� this program states the conditions each possible value K for a queen
placed in column J should satisfy�

Problem 	 Knight
s tour� Find a cyclic route of a knight on the chess board so that each �eld
is visited exactly once�

Solution We assign to each �eld a value between � and � and formalize the statement �from
every �eld there is a �knight�reachable� �eld with the value one bigger�� By symmetry we can
assume that the value assigned to the �eld X��� �� is �� Taking into account that the route is
to be cyclic we actually get the following solution�

const n
 ��

type board� array ����n� ���n� of ����n���

rel knight� board�

go on� �board� ����n�� ����n�	�

knight�X	 � �I � ����n� �J � ����n� go on�X� I� J	� X��� ��
 ��

go on�X� I� J	 � �I� � ����n� �J� � ����n�

�abs��I�I�	
�J�J�		
 �� X�I�� J��
 �X�I� J� mod n�	 � �	�

DELAY go on�X� I� J	 UNTIL known�X�I�J�	�

Comments Note that the equation abs�X
 Y	
 � used in the de�nition of go on has exactly
� solutions� which determine the possible directions for a knight move� Observe that each time
this call to �
� is selected� both arguments of it are known� The e�ciency of go on could of
course be improved by explicitly enumerating the choices for the o	sets of the new coordinates
w�r�t� the old ones�

The behaviour of the above program is quite subtle� First� thanks to the delay declaration�
 � constraints of the form go on�X� I� J	 are generated� Then� thanks to the statement X���
��
 �� the �rst of them is �triggered� which one by one activates the remaining constraints�
The backtracking is carried out by choosing di	erent values for the variables I� and J�� The
delay declaration is not needed� but without it this program would be hopelessly ine�cient�

It is interesting to note that in Wirth �Wir! �� a classical book on programming in Pascal�
the solutions to the last two problems are given as prototypical examples of recursive programs�
Here recursion is implicit�

We conclude this section by one more program� It will be needed in the next section�

Problem
 Let m
 �
 and n
 �

� Determine the number of di	erent elements in an array
X�array ����m� ���n� of integer�

!

Solution

const m
 �
�

n
 �

�

type board� array ����m����n� of integer�

rel count� �board� natural	�

count�X� Number	 �
Number
 m
 n �

��I� J� I � ����m�� J � ����n��

��K � ����I��� �L � ����n� X�I�J�
 X�K�L�	

� X�I�J� occurs in an earlier row

� ��L � ����J��� X�I�J�
 X�I�L�	�

� X�I�J� occurs earlier in the same row

	�

Comments In this program we used the counting quanti�er introduced in Gries �Gri��� page
!�� and adopted in Klu�zniak �Klu��� in the speci�cation language SPILL��� In general� given
lists L�� L�� the term ��I� J� I � L�� J � L�� Q	 stands for the number of pairs �i�j	
such that i � L�� j � L� and for which the query QfI�i�J�jg succeeds� It is possible to avoid
the use of the counting quanti�er at the expense of introducing a local array of type board� This
alternative program is more laborious to write�

This concludes our presentation of selected logic programs written using arrays and bounded
quanti�ers� Other examples� including those involving numerical computation can be found in
Barklund and Millroth �BM����

� Arrays and Bounded Quanti�ers in Constraint Logic Pro�

gramming

We now present some constraint logic programs� These are constraint programs with �nite
domains in the style of van Hentenryck �vH����� Each of them has a similar pattern� constraints
are �rst generated� and then resolved after the possible values for variables are successively
generated� To clarify their use we provide here alternative solutions to two problems discussed
in the previous section�

Problem �� Solve problem ! by means of constraints�

Solution

const n
 ��

type board� array ����n� of ����n��

rel queens� safe� generate� board�

queens�X	 � safe�X	� generate�X	�

safe�X	 � �I � ����n� �J � �I����n�

�X�I� 	� X�J�� X�I� 	� X�J� � �J�I	� X�I� 	� X�J� � �I�J		�

generate�X	 � �I � ����n� �J � dom�X�I�	 X�I�
 J�

�

Comments Here dom�X	� for a �possibly subscripted� variable X� is a built�in which denotes
the list of current values in the domain of X� say in the ascending order� The value of dom�X	
can change only by decreasing� by executing a constraint� so in the above program an atom of
the form X 	� t�

The relation �	�� was used in the previous section only in the case when both arguments of
it were known� Here we generalizes its usage� as we now allow that one or both sides of it are
not known� In fact� � 	�� is a built�in de�ned as in van Hentenryck �vH��� pages ������� though
generalized to arbitrary non�compound types�

We require that one of the following holds�

� Both sides of � 	�� are known� This case is explained in the previous section�

� At most one of the sides of �	�� is known and one of the sides of � 	��� denoted below by
X� is either a simple variable or a subscripted variable with a known subscript�

In the second case X 	� t is de�ned as follows� where for a term s� Val�s	 stands for the set
of its currently possible values�

if Val�X	 � Val�t	

 then succeed
elseif Val�t	 is a singleton then # t is known� so X is not known

begin dom�X	�
 dom�X	 � Val�t	� # dom�X	 	�

if dom�X	
 ffg then X�
 f

end �

If neither Val�X	 � Val�t	

 nor Val�t	 is a singleton� then the execution of X 	� t is
delayed� We treat t 	� X as X 	� t�

So for example in the program fragment

� � �
type bool� �false� true��

var B� bool�

A� array ������ of bool�

A��� 	� A���� A��� 	� B� B
 true�

� � �

the constraints A��� 	� A��� and A��� 	� B are �rst delayed and upon the execution of the
atom B
 true the variable A��� becomes false and A��� becomes true�

In turn� in the case of the program given above the execution of an atom of the form X�I�

 J for some I�J � ����n� can a	ect the domains of the variables X�K� for K � �I����n�

This solution to the � queens problem is a forward checking program �see van Hentenryck
�vH��� pages ������!��� Note the textual similarity between this program and the one given
in solution � to problem !� Essentially� the calls to the safe and generate relations are now
reversed� The generate relation corresponds to the labeling procedure in van Hentenryck
�vH����� In the subsequent programs the de�nition of the generate relation is always of the
same format and is omitted�

Problem �� Solve problem by means of constraints�

�

Solution

const n
 �

�

rel permutation� �array ����n� of �� array ����n� of �	�

permutation�X� Y	 �
type board� array ����n� of ����n��

rel one one� generate� board�

one one�Z	 � �I � ����n� �J � �I����n� Z�I� 	� Z�J��

var A� board�

one one�A	� generate�A	�

�I � ����n� Y�I�
 X�A�I���

Comments In this solution� apart from the local array declaration� we also use local type and
relation declarations� The e�ciency w�r�t� to the logic programming solution is increased by
stating� by means of the call to the one one relation� that A is a ��� function� This replaces the
previously used statement that A is an onto function� The call to one one generates n
�n����� �
���� constraints�

We conclude this section by dealing with another classic problem
 that of colouring a map�

Problem �� Given is a binary relation neighbour between countries� Colour a map in such a
way that no two neighbours have the same color�

Solution

type color� �blue� green� red� yellow��

countries� �austria� belgium� france� italy� � � ���

rel map color� constrain� generate� array countries of color�

neighbour� �country� country	�

map color�X	 � constrain�X	� generate�X	�

constrain�X	 � �I � countries �J � countries

neighbour�I�J	 � X�I� 	� X�J��

Comments We interpret here P� Q as follows�

�P� Q	 � P� Q�

�P� Q	 � �P�

so like the IF P THEN Q statement of G�odel� Note that in the above program at the moment of
selection of the P� Q statement P is ground� Obviously� an e�cient implementation of P� Q

should avoid the reevaluation of P�
Thus the constrain relation generates here the constraints of the form X�I� 	� X�J� for all

I�J such that neighbour�I�J	�

� Adding Minimization and Maximization

Next� we introduce a construct allowing us to express in a compact way the requirement that
we are looking for an optimal solution� To this end we introduce the minimization operator Y

 �X�Q which is de�ned as follows�

��

Y
 �X�Q � QfX�Yg� ���X � X � Y� Q		�

We assume here that X and Y are of the same type and that � is a built�in ordering on the
domain of the type of X and Y� The existential quanti�er �X Q is de�ned by the clause

�X Q � Q�

The e�cient implementation of the minimization operator should make use of memoization
�sometimes called tabulation� to store the solutions to the query Q found during the successive
attempts to �nd a minimal one�

A dual operator� the maximization operator Y
 �X�Q� is de�ned by�

Y
 �X�Q � QfX�Yg� � ��X � X � Y� Q		�

As before we assume that � is a built�in ordering on the domain of the type of X and Y� In
Barklund and Hill �BH��� the minimization and the maximization operators are introduced as
a form of arithmetic quanti�ers� in the style of the counting quanti�er introduced earlier� The
above two clauses show that they are derived concepts�

The following simple example illustrates the use of these constructs�

Problem �� Find a minimum and a maximum of a given sequence of ��� integers�

Solution

const n
 �

�

rel min and max� �integer� integer� array ����n� of integer	�

min and max�Min� Max� A	 �
Min
 �X� �I � ����n� X
 A�I��

Max
 �X� �I � ����n� X
 A�I��

Next� we use these two operators in two constraint programs�

Problem �� The cutting stock problem �see van Hentenryck �vH��� pages ������!��� There
are !� con�gurations� kinds of shelves and � identical boards to be cut� Given are � arrays�

Shelves�array ������� ����� of natural�
Req�array ������ of natural�
Waste�array ������� of natural�

Shelves�K�J� denotes the number of shelves of kind J cut in con�guration K� Waste�I�
denotes the waste per board in con�guration I and Req�J� the required number of shelves of
kind J� The problem is to cut the required number of shelves of each kind in such a way that
the total waste is minimized�

Solution We represent the chosen con�gurations by the array
Conf� array ������ of �������

where Conf�I� denotes the con�guration used to cut the board I�

rel solve� �array ������ of �������� natural	�

generate� array ������ of ��������

solve�Conf� Sol	 �
Sol
 �TCost�

��

� Sol is the minimal TCost such that�

�I � ������ Conf�I� � Conf�I����

� symmetry between the boards

�J � ������ $�
I��

Shelves�Conf�I��J� � Req�J��

� enough shelves are cut

TCost
 $�
I��

Waste�Conf�I���

� TCost is the total waste

generate�Conf	�

Comments In this program we used as a shorthand the sum notation �$ � � ��� In general� it
is advisable to use the sum quanti�er �see Gries �Gri��� page !���� which allows us to use $l

I�k
t

as a term� The sum quanti�er is adopted in SPILL�� language of Klu�zniak �Klu���� Klu�zniak
s
notation for this expression is� �S I� k � I � l� t	� The interpretation of the constraints
of the form X � t� X � t or X
 t is similar to that of X 	� t and is omitted�

We conclude by solving the following problem�

Problem �� Let m
 �
 and n
 �

� Given is an array Co which assigns to each pixel on an
m by n board a colour� A region is a maximal set of adjacent pixels that have the same colour�
Determine the number of regions�

In the program below we assign to the pixels belonging to the same region the same natural
number� drawn between � and m
n� If we maximize the number of so used natural numbers we
obtain the desired solution�

Solution

const m
 �
�

n
 �

�

type color� �blue� green� red� yellow��

pattern� array ����m����n� of color�

board� array ����m����n� of ����m
n��
rel pixel� �pattern� natural	�

no� �pattern� board	�

generate� board�

count� �board� natural	�

pixel�Co� Sol	 � Sol
 �Number�
var X� board�

no�Co� X	� generate�X	� count�X� Number	�

no�Co� X	 � �I � ����m� �J � ����n�

�

�I � m � �Co�I�J�
 Co�I���J� � X�I�J�
 X�I���J�		�

�J � n � �Co�I�J�
 Co�I�J��� � X�I�J�
 X�I�J���		

	�

Comments The count relation is de�ned in the solution to problem �� In the above program
�rst �m
 n � �m� n� � ���� constraints are generated� Each of them deals with two adjacent
�elds and has the form of an equality or inequality� Then the possible values for the elements of

��

X are generated and the number Number of so used natural numbers is counted� The maximum
value for Number is then the desired solution�

The resulting program is probably not e�cient� but still it is interesting to note that the
problem at hand can be solved in a simple way without explicit recursion�

� Conclusions

We have presented here several logic and constraint logic programs that use bounded quanti��
cation and arrays� We hope that these examples convinced the readers about the usefulness
of these constructs� We think that this approach to programming is especially attractive when
dealing with various optimization problems� as their speci�cations often involve arrays� bounded
quanti�cation� summation� and minimization and maximization� Constraint programming so�
lutions to these problems can be easily written using arrays� bounded quanti�ers� the sum and
cardinality quanti�ers� and the minimization and maximization operators� As examples let us
mention the stable marriage problem� various timetabling problems and integer programming�

Of course� it is not obvious whether the solutions so obtained are e�cient� We expect�
however� that after an addition of a small number of built�in
s� like deleteff and deleteffc

of van Hentenryck �vH��� pages ������� it will be possible to write simple constraint programs
which will be comparable in e�ciency with those written in other languages for constraint logic
programming�

When introducing arrays we were quite conservative and only allowed static arrays� i�e� arrays
whose bounds are determined at compile time� Of course� in a more realistic language proposal
also open arrays� i�e� arrays whose bounds are determined at run�time should be allowed� One
might also envisage the use of �exible arrays� i�e� arrays whose bounds can change at run�time�

In order to make this programming proposal more realistic one should provide a smooth
integration of arrays with recursive types� like lists and trees� In the language SPILL�� of
Klu�zniak �Klu��� types are present but only as sets of ground terms� and polymorphism is
not allowed� Barklund and Hill �BH��� proposed to add arrays to G�odel �which does support
polymorphism� as a system module� We would prefer to treat arrays on equal footing with other
types�

We noticed already that within the logic programming paradigm the demarkation line be�
tween iteration and recursion di	ers from the one in the imperative programming paradigm� In
order to better understand the proposed programming style one should �rst clarify when to use
iteration instead of recursion� In this respect it is useful to quote the opening sentence of Bark�
lund and Millroth �BM���� �Programs operating on inductively de�ned data structures� such
as lists� are naturally de�ned by recursive programs� while programs operating on �indexable�
data structures� such as arrays� are naturally de�ned by iterative programs��

We do not entirely agree with this remark� For example� the �su�x� quanti�ers mentioned
in Section � allow us to write many list processing programs without explicit use of recursion
�see Voronkov �Vor���� and the quicksort program written in the logic programming style is
more natural when written using recursion than iteration�

The single assignment property of logic programming makes certain programs that involve
arrays �like Warshall
s algorithm� obviously less space e�cient than their imperative program�
ming counterparts� This naturally motivates research on e�cient implementation techniques of
arrays within the logic programming paradigm�

Finally� a comment about the presentation� We were quite informal when explaining the
meaning of the proposed language constructs� Note that the usual de�nition of SLD�resolution

��

has to be appropriately modi�ed in presence of arrays and bounded quanti�cation� For example�
the query X���

� �I � ������ X�I� 	�
 fails but this fact can be deduced only when the
formation of resolvents is formally explained� To this end substitution for subscripted variables
needs to be properly de�ned� One possibility is to adopt one of the de�nitions used in the
context of veri�cation of imperative programs �see Apt �Apt��� pages � ��� ���� We leave the
task of de�ning a formal semantics to another paper�

Acknowledgements I would like to thank here Jonas Barklund and Feliks Klu�zniak for useful
discussions on the subject of bounded quanti�cation and Pascal van Hentenryck for encourage�
ment at the initial stage of this work� Also� I am grateful to Feliks Klu�zniak for helpful comments
on this paper�

References

�Apt��� K�R� Apt� Ten years of Hoare
s logic� a survey� part I� ACM TOPLAS� �����%����
�����

�BB��� J� Barklund and J� Bevemyr� Prolog with arrays and bounded quanti�cations� In
Andrei Voronkov� editor� Logic Programming and Automated Reasoning�Proc� �th

Intl� Conf�� LNCS ��� pages ��%��� Berlin� ����� Springer�Verlag�

�BH��� J� Barklund and P� Hill� Extending G�odel for expressing restricted quanti�cations
and arrays� UPMAIL Tech� Rep� ���� Computer Science Department� Uppsala Uni�
versity� Uppsala� �����

�BM��� J� Barklund and H� Millroth� Providing iteration and concurrency in logic programs
through bounded quanti�cations� UPMAIL Tech� Rep� !�� Computer Science De�
partment� Uppsala University� Uppsala� �����

�CC��� H� Coelho and J� C� Cotta� Prolog by Example� Springer�Verlag� Berlin� �����

�ER��� L��H� Eriksson and M� Rayner� Incorporating mutable arrays into logic programming�
In S� &A� Tarnlund� editor� Proceedings of the �		� International Conference on Logic

Programming� pages ���%���� Uppsala University� �����

�Gri��� D� Gries� The Science of Programming� Springer�Verlag� New York� �����

�Har��� D� Harel� And'or programs� a new approach to structured programming� ACM

Toplas� ������%�!� �����

�HL��� P� M� Hill and J� W� Lloyd� The G
odel Programming Language� The MIT Press�
�����

�Klu��� F� Klu�zniak� Towards practical executable speci�cations in logic� Research report
LiTH�IDA�R����� � Department of Computer Science� Link�oping University� August
�����

�Klu��� F� Klu�zniak� SPILL��� the language� Technical report ZMI Reports No ������
Institute of Informatics� Warsaw University� July ����� A deliverable for year � of
the BRA Esprit Project Compulog ��

��

�KM��� F� Klu�zniak and M� Mi�lkowska� Readable� runnable requirements speci�cations�
Bridging the credibility gap� In M� Hermenegildo and J� Penjam� editors� Pro�

gramming Language Implementation and Logic Programming� Proceedings of the

�th International Symposium
 PLILP�	�� Madrid
 September �		�� pages ���%����
Springer�Verlag� �����

�MBB���� J� Ma�luszy�nski� S� Bonnier� J� Boye� F� Klu�zniak� A� K&agedal� and U� Nilsson� Logic
programs with external procedures� In K�R� Apt� J�W� de Bakker� and J�J�M�M�
Rutten� editors� Current Trends in Logic Programming Languages� pages ��%��� The
MIT Press� Cambridge� Massachussets� �����

�vH��� P� van Hentenryck� Constraint Satisfaction in Logic Programming� Logic Program�
ming Series� The MIT Press� Cambridge� MA� �����

�Vor��� A� Voronkov� Logic programming with bounded quanti�ers� In A� Voronkov� editor�
Logic Programming and Automated Reasoning�Proc� �nd Russian Conference on

Logic Programming� LNCS ���� pages �� %���� Berlin� ����� Springer�Verlag�

�Wir! � N� Wirth� Algorithms � Data Structures � Programs� Prentice�Hall� ��! �

��

