67 research outputs found

    Physiological control on carbon isotope fractionation in marine phytoplankton

    Get PDF
    One of the great challenges in biogeochemical research over the past half a century has been to quantify and understand the mechanisms underlying stable carbon isotope fractionation (ϵp) in phytoplankton in response to changing CO2 concentrations. This interest is partly grounded in the use of fossil photosynthetic organism remains as a proxy for past atmospheric CO2 levels. Phytoplankton organic carbon is depleted in 13C compared to its source because of kinetic fractionation by the enzyme RubisCO during photosynthetic carbon fixation, as well as through physiological pathways upstream of RubisCO. Moreover, other factors such as nutrient limitation, variations in light regime as well as phytoplankton culturing systems and inorganic carbon manipulation approaches may confound the influence of aquatic CO2 concentrations [CO2] on ϵp. Here, based on experimental data compiled from the literature, we assess which underlying physiological processes cause the observed differences in ϵp for various phytoplankton groups in response to C-demand/C-supply, i.e., particulate organic carbon (POC) production / [CO2]) and test potential confounding factors. Culturing approaches and methods of carbonate chemistry manipulation were found to best explain the differences in ϵp between studies, although day length was an important predictor for ϵp in haptophytes. Extrapolating results from culturing experiments to natural environments and for proxy applications therefore require caution, and it should be carefully considered whether culture methods and experimental conditions are representative of natural environments

    Physiological control on carbon isotope fractionation in marine phytoplankton

    Get PDF
    One of the great challenges in biogeochemical research over the past half a century has been to quantify and understand the mechanisms underlying stable carbon isotope fractionation (ϵp) in phytoplankton in response to changing CO2 concentrations. This interest is partly grounded in the use of fossil photosynthetic organism remains as a proxy for past atmospheric CO2 levels. Phytoplankton organic carbon is depleted in 13C compared to its source because of kinetic fractionation by the enzyme RubisCO during photosynthetic carbon fixation, as well as through physiological pathways upstream of RubisCO. Moreover, other factors such as nutrient limitation, variations in light regime as well as phytoplankton culturing systems and inorganic carbon manipulation approaches may confound the influence of aquatic CO2 concentrations [CO2] on ϵp. Here, based on experimental data compiled from the literature, we assess which underlying physiological processes cause the observed differences in ϵp for various phytoplankton groups in response to C-demand/C-supply, i.e., particulate organic carbon (POC) production / [CO2]) and test potential confounding factors. Culturing approaches and methods of carbonate chemistry manipulation were found to best explain the differences in ϵp between studies, although day length was an important predictor for ϵp in haptophytes. Extrapolating results from culturing experiments to natural environments and for proxy applications therefore require caution, and it should be carefully considered whether culture methods and experimental conditions are representative of natural environments

    Facies Distribution, Sequence Stratigraphy, Chemostratigraphy, and Diagenesis of the Middle-Late Triassic Al Aziziyah Formation, Jifarah Basin, NW Libya

    Get PDF
    This study presents the depositional facies, sequence stratigraphy, chemostratigraphy and diagenetic evolution of the Middle-Late Triassic Al Aziziyah Formation, Jifarah Basin northwest Libya. Eight measured sections were sampled and analyzed. High-resolution stable carbon isotope data were integrated with an outcrop-based sequence stratigraphic framework, to build the stratigraphic correlation, and to provide better age control of the Al Aziziyah Formation using thin section petrography, cathodoluminescence (CL) microscopy, stable isotope, and trace element analyses. The Al Aziziyah Formation was deposited on a gently sloping carbonate ramp and consists of gray limestone, dolomite, and dolomitic limestone interbedded with rare shale. The Al Aziziyah Formation is predominantly a 2nd-order sequence (5-20 m.y. duration), with shallow marine sandstone and peritidal carbonate facies restricted to southernmost sections. Seven 3rd-order sequences were identified (S1-S7) within the type section. North of the Ghryan Dome section are three mainly subtidal sequences (S8-S10) that do not correlate to the south. Shallowing upward trends define 4th-5th order parasequences, but correlating these parasequences between sections is difficult due to unconformities. The carbon isotope correlation between the Ghryan Dome and Kaf Bates sections indicates five units of δ13C depletion and enrichment (sequences 3-7). The enrichment of δ13C values in certain intervals most likely reflects local withdrawal of 12C from the ocean due to increased productivity, as indicated by the deposition of organic-rich sediment, and/or whole rock sediment composed of calcite admixed with aragonite. The depletion of δ13C is clearly associated with exposure surfaces and with shallow carbonate facies. Heavier δ18O values are related to evaporetic enrichment of 18O, whereas depletion of δ18O is related to diagenesis due to freshwater input. Al Aziziyah Formation diagenetic events indicate: 1) initial meteoric and shallow burial; 2) three types of dolomite D1, D2 and D3 were most likely formed by microbial, seepage reflux and burial processes, respectively; and 3) diagenetic cements cannot be related to the arid, mega-monsoonal climate of the Triassic and most likely formed subsequently in a humid, meteoric setting

    Eocene cooling linked to early flow across the Tasmanian Gateway

    Get PDF
    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO(2)). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ∼49–50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2–4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO(2) forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling

    Na sombra do Vietnã: o nacionalismo liberal e o problema da guerra

    Full text link

    CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes

    Get PDF
    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum have been measured by means of membrane-inlet mass spectrometry. In-vivo assays were carried out at different CO2 concentrations, representing a range of pCO2 from 180 to 1200 μatm. The relative bicarbonate contribution (i.e. the ratio of bicarbonate uptake to total inorganic carbon uptake) and leakage (i.e. the ratio of CO2 efflux to total inorganic carbon uptake) varied from 0.2 to 0.5 and 0.4 to 0.7, respectively, and differed significantly between species. These ratios were fed into a single-compartment model, and εp values were calculated and compared to carbon isotope fractionation measured under the same conditions. For all investigated species, modeled and measured εp values were comparable (A. fundyense, S. trochoidea, P. reticulatum) and/or showed similar trends with pCO2 (A. fundyense, G. spinifera, P. reticulatum). Offsets are attributed to biases in inorganic flux measurements, an overestimated fractionation factor for the CO2-fixing enzyme RubisCO, or the fact that intracellular inorganic carbon fluxes were not taken into account in the model. This study demonstrates that CO2-dependency in εp can largely be explained by the inorganic carbon fluxes of the individual dinoflagellates

    Heroism and Self-Sacrifice: The Vietnam War as a Case in Point

    No full text
    corecore