50 research outputs found

    Stability boundary approximation of periodic dynamics

    Full text link
    We develop here the method for obtaining approximate stability boundaries in the space of parameters for systems with parametric excitation. The monodromy (Floquet) matrix of linearized system is found by averaging method. For system with 2 degrees of freedom (DOF) we derive general approximate stability conditions. We study domains of stability with the use of fourth order approximations of monodromy matrix on example of inverted position of a pendulum with vertically oscillating pivot. Addition of small damping shifts the stability boundaries upwards, thus resulting to both stabilization and destabilization effects.Comment: 9 pages, 2 figure

    Shape optimization for the generalized Graetz problem

    Get PDF
    We apply shape optimization tools to the generalized Graetz problem which is a convection-diffusion equation. The problem boils down to the optimization of generalized eigen values on a two phases domain. Shape sensitivity analysis is performed with respect to the evolution of the interface between the fluid and solid phase. In particular physical settings, counterexamples where there is no optimal domains are exhibited. Numerical examples of optimal domains with different physical parameters and constraints are presented. Two different numerical methods (level-set and mesh-morphing) are show-cased and compared

    A theoretical approach to the interaction between buckling and resonance instabilities

    Get PDF
    This article deals with the interaction between buckling and resonance instabilities of mechanical systems. Taking into account the effect of geometric nonlinearity in the equations of motion through the geometric stiffness matrix, the problem is reduced to a generalized eigenproblem where both the loading multiplier and the natural frequency of the system are unknown. According to this approach, all of the forms of instabilities intermediate between those of pure buckling and pure forced resonance can be investigated. Numerous examples are analyzed, including discrete mechanical systems with one to n degrees of freedom, continuous mechanical systems, such as oscillating deflected beams subjected to a compressive axial load, as well as oscillating beams subjected to lateral–torsional buckling. A general finite element procedure is also outlined, with the possibility to apply the proposed approach to any general bi- or tri-dimensional framed structure. The proposed results provide a new insight in the interpretation of coupled phenomena such as flutter instability of long-span or high-rise structures
    corecore