23 research outputs found

    Suppression of Estrogen Receptor Transcriptional Activity by Connective Tissue Growth Factor

    Get PDF
    Secreted growth factors have been shown to stimulate the transcriptional activity of estrogen receptors (ER) that are responsible for many biological processes. However, whether these growth factors physically interact with ER remains unclear. Here, we show for the first time that connective tissue growth factor (CTGF) physically and functionally associates with ER. CTGF interacted with ER both in vitro and in vivo. CTGF interacted with ER DNA-binding domain. ER interaction region in CTGF was mapped to the thrombospondin type I repeat, a cell attachment motif. Overexpression of CTGF inhibited ER transcriptional activity as well as the expression of estrogen-responsive genes, including pS2 and cathepsin D. Reduction of endogenous CTGF with CTGF small interfering RNA enhanced ER transcriptional activity. The interaction between CTGF and ER is required for the repression of estrogen-responsive transcription by CTGF. Moreover, CTGF reduced ER protein expression, whereas the CTGF mutant that did not repress ER transcriptional activity also did not alter ER protein levels. The results suggested the transcriptional regulation of estrogen signaling through interaction between CTGF and ER, and thus may provide a novel mechanism by which cross-talk between secreted growth factor and ER signaling pathways occurs

    Vitamin D receptor B1 and exon 1d: functional and evolutionary analysis

    No full text
    The vitamin D receptor (VDR) shares a conserved structural and functional organization with other nuclear receptor (NR) superfamily members. For many NRs, N-terminal variant isoforms that display distinct cell-, stage- and promoter- specific actions have been identified. The novel VDR isoform VDRB1, with a 50 amino acid N-terminal extension, is produced from low abundance transcripts that contain exon 1d of the human VDR locus. There is evidence for the conservation of this exon in other mammalian and avian species. The transactivation differences between VDRB1 and the original VDR, clarified here, provide insights into mechanisms that may contribute to functional differences and potentially distinct physiological roles for these two VDR isoforms. (C) 2004 Elsevier Ltd. All rights reserved

    The serotonin-2A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain

    No full text
    The serotonin-2A (HTR2A) receptor is a molecule of particular interest in biological psychiatry, as it is an important target for psychotropic drugs,1,2 and altered HTR2A expression has been found in several neuropsychiatric conditions, including depression3 and schizophrenia.4 Genetic association has been reported between a synonymous 102T/C polymorphism in the gene encoding HTR2A and a number of clinical phenotypes, including schizophrenia,5,6 clozapine response,7 psychotic symptoms in Alzheimer's disease8 and certain features of depression.9 Given that there are no known effects of the 102T/C polymorphism on the structure of the receptor, attention has switched to the possibility that the observations of both altered expression and genetic association point to functional sequence variants that alter expression of the HTR2A gene.10 Moreover, data have been presented recently suggesting that mRNAs containing the 102T- and C-alleles are differentially expressed.11 This suggests a direct effect of the variant itself on mRNA levels, or the influence of a distinct regulatory variant, such as the -1438A/G promoter polymorphism, with which it is in perfect linkage disequilibrium.12 The present study tested this hypothesis by employing a highly accurate quantitative allele- specific primer extension assay13 to measure the relative expression of brain mRNAs carrying each allele in 23 individuals heterozygous for the 102T/C polymorphism. Comparison between allele ratios derived from genomic DNA and mRNA from several cortical regions revealed that the 102C- and T-alleles are expressed identically. Furthermore, the absence of any interindividual variability in relative mRNA allele ratio suggests that the HTR2A locus is unlikely to contain common polymorphisms or epigenetic modification that alter HTR2A mRNA levels in adult brain, and essentially exclude such phenomena as a potential explanation for the altered expression and genetic associations that have been reported to date
    corecore