144 research outputs found

    Inter-rater agreement in the assessment of abnormal chest X-ray findings for tuberculosis between two Asian countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inter-rater agreement in the interpretation of chest X-ray (CXR) films is crucial for clinical and epidemiological studies of tuberculosis. We compared the readings of CXR films used for a survey of tuberculosis between raters from two Asian countries.</p> <p>Methods</p> <p>Of the 11,624 people enrolled in a prevalence survey in Hanoi, Viet Nam, in 2003, we studied 258 individuals whose CXR films did not exclude the possibility of active tuberculosis. Follow-up films obtained from accessible individuals in 2006 were also analyzed. Two Japanese and two Vietnamese raters read the CXR films based on a coding system proposed by Den Boon et al. and another system newly developed in this study. Inter-rater agreement was evaluated by kappa statistics. Marginal homogeneity was evaluated by the generalized estimating equation (GEE).</p> <p>Results</p> <p>CXR findings suspected of tuberculosis differed between the four raters. The frequencies of infiltrates and fibrosis/scarring detected on the films significantly differed between the raters from the two countries (<it>P </it>< 0.0001 and <it>P </it>= 0.0082, respectively, by GEE). The definition of findings such as primary cavity, used in the coding systems also affected the degree of agreement.</p> <p>Conclusions</p> <p>CXR findings were inconsistent between the raters with different backgrounds. High inter-rater agreement is a component necessary for an optimal CXR coding system, particularly in international studies. An analysis of reading results and a thorough discussion to achieve a consensus would be necessary to achieve further consistency and high quality of reading.</p

    Treatment of Acne Keloidalis Nuchae: A Systematic Review of the Literature

    Full text link
    Acne keloidalis nuchae (AKN) is a chronic inflammatory condition that leads to fibrotic plaques, papules and alopecia on the occiput and/or nape of the neck. Traditional medical management focuses on prevention, utilization of oral and topical antibiotics, and intralesional steroids in order to decrease inflammation and secondary infections. Unfortunately, therapy may require months of treatment to achieve incomplete results and recurrences are common. Surgical approach to treatment of lesions is invasive, may require general anesthesia and requires more time to recover. Light and laser therapies offer an alternative treatment for AKN. The present study systematically reviews the currently available literature on the treatment of AKN. While all modalities are discussed, light and laser therapy is emphasized due to its relatively unknown role in clinical management of AKN. The most studied modalities in the literature were the 1064-nm neodymium-doped yttrium aluminum garnet laser, 810-nm diode laser, and CO(2) laser, which allow for 82–95% improvement in 1–5 sessions. Moreover, side effects were minimal with transient erythema and mild burning being the most common. Overall, further larger-scale randomized head to head control trials are needed to determine optimal treatments

    Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms

    Get PDF
    Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies

    Detection of Loss of Imprinting by Pyrosequencing

    No full text
    Genomic imprinting is an epigenetically regulated process determining allele-specific expression in a parent-of-origin dependent manner. Altered expression of imprinted genes characterizes numerous congenital diseases including Beckwith-Wiedemann, Silver-Russell, Angelman, and Prader-Willi syndromes as well as acquired disorders such as cancer. The detection of imprinting alterations has important translational implications in clinics and the application of the Pyrosequencing(\uae) technology offers the possibility to identify accurately also subtle modifications in allele-specific expression and in DNA methylation levels.Here, we describe two methods to investigate genomic imprinting defects (loss of imprinting, LOI) using Pyrosequencing: (1) Allele-specific expression analysis based on single nucleotide polymorphism (SNP), and (2) quantification of DNA methylation.The protocol for the quantification of the allele-specific expression is carried out by analyzing an informative SNP located within the transcribed portion of an imprinted gene. The method includes the cDNA amplification of the region containing the SNP and the Pyrosequencing-based analysis for the quantitative allelic discrimination comparing the ratio of the two alleles.The second protocol allows the accurate quantification of the DNA methylation levels at the Imprinting Control Regions (ICRs). Imprinted genes are clustered in chromosomal regions and their expression is mainly regulated by DNA methylation at CpG sites located within the ICRs. After bisulfite modification of the genomic DNA, the region of interest is amplified by PCR and analyzed by Pyrosequencing. The methylation value at each CpG site is calculated by the CpG software, which determines the ratio of the incorporation of "C" and "T" and converts the value in methylation percentage
    corecore