33 research outputs found

    The Formin-Homology Protein SmDia Interacts with the Src Kinase SmTK and the GTPase SmRho1 in the Gonads of Schistosoma mansoni

    Get PDF
    BACKGROUND:Schistosomiasis (bilharzia) is a parasitic disease of worldwide significance affecting human and animals. As schistosome eggs are responsible for pathogenesis, the understanding of processes controlling gonad development might open new perspectives for intervention. The Src-like tyrosine-kinase SmTK3 of Schistosoma mansoni is expressed in the gonads, and its pharmacological inhibition reduces mitogenic activity and egg production in paired females in vitro. Since Src kinases are important signal transduction proteins it is of interest to unravel the signaling cascades SmTK3 is involved in to understand its cellular role in the gonads. METHODOLOGY AND RESULTS:Towards this end we established and screened a yeast two-hybrid (Y2H) cDNA library of adult S. mansoni with a bait construct encoding the SH3 (src homology) domain and unique site of SmTK3. Among the binding partners found was a diaphanous homolog (SmDia), which was characterized further. SmDia is a single-copy gene transcribed throughout development with a bias towards male transcription. Its deduced amino acid sequence reveals all diaphanous-characteristic functional domains. Binding studies with truncated SmDia clones identified SmTK3 interaction sites demonstrating that maximal binding efficiency depends on the N-terminal part of the FH1 (formin homology) domain and the inter-domain region of SmDia located upstream of FH1 in combination with the unique site and the SH3 domain of SmTK3, respectively. SmDia also directly interacted with the GTPase SmRho1 of S. mansoni. In situ hybridization experiments finally demonstrated that SmDia, SmRho1, and SmTK3 are transcribed in the gonads of both genders. CONCLUSION:These data provide first evidence for the existence of two cooperating pathways involving Rho and Src that bridge at SmDia probably organizing cytoskeletal events in the reproductive organs of a parasite, and beyond that in gonads of eukaryotes. Furthermore, the FH1 and inter domain region of SmDia have been discovered as binding sites for the SH3 and unique site domains of SmTK3, respectively

    Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer

    Get PDF
    Both the non-receptor tyrosine kinase, c-Src, and members of the epidermal growth factor (EGF) receptor family are overexpressed in high percentages of human breast cancers. Because these molecules are plasma membrane-associated and involved in mitogenesis, it has been speculated that they function in concert with one another to promote breast cancer development and progression. Evidence to date supports a model wherein c-Src potentiates the survival, proliferation and tumorigenesis of EGF receptor family members, in part by associating with them. Phosphorylation of the EGF receptor by c-SRC is also critical for mitogenic signaling initiated by the EGF receptor itself, as well as by several G-protein coupled receptors (GPCRs), a cytokine receptor, and the estrogen receptor. Thus, c-Src appears to have pleiotropic effects on cancer cells by modulating the action of multiple growth-promoting receptors

    Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines

    Get PDF
    Introduction: Overexpression of the receptor tyrosine kinase HER2 has been reported in around 25% of human breast cancers, usually indicating a poor prognosis. As a result, HER2 has become a popular target for therapy. However, despite recent advances in HER2 targeted therapy, many patients still experience primary and secondary resistance to such treatments. It is therefore important to understand the underlying mechanism of resistance and to develop more effective therapeutic interventions for breast cancer. Methods: The sensitivity of a panel of seven breast cancer cell lines to treatment with various types HER-family inhibitors alone, or in combination with a selection of other tyrosine kinase inhibitors (TKIs) or chemotherapeutic agents was determined using the Sulforhodamine B colorimetric assay. Receptor expression, cell-cycle distribution, cell signalling and cell migration were determined using flow cytometry, Western blot and Incucyte Zoom Live-Cell Analysis System respectively. Results: Overall, breast cancer cells were more sensitive to treatment with the irreversible pan-HER family inhibitors, particularly afatinib and neratinib, than treatment with the first-generation reversible inhibitors. Of three HER-2 overexpressing cell lines in this panel, SKBr3 and BT474 were highly sensitive to treatment with HER-family inhibitors (IC50s as low as 3 nM), while MDA-MB-453 was relatively resistant (lowest IC50 = 0.11 μM). When the HER-family inhibitors were combined with other agents such as NVP-AEW541 (an IGF-1R inhibitor), dasatinib (a Src inhibitor) or crizotinib (a c-Met/ALK inhibitor), such combination produced synergistic effects in some of the cell lines examined. Interestingly, co-targeting of Src and HER-family members in MDA-MB-453 cells led to synergistic growth inhibition, suggesting the importance of Src in mediating resistance to HER2-targeting agents. Finally, treatment with the irreversible HER family blockers and dasatinib were also most effective at inhibiting the migration of breast cancer cells. Conclusion: We concluded that the irreversible inhibitors of HER-family members are generally more effective at inhibiting growth, downstream signalling and migration compared with reversible inhibitors, and that combining HER-family inhibitors with other TKIs such as dasatinib may have therapeutic advantages in certain breast cancer subtypes and warrants further investigation

    Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation

    Get PDF
    Somatic mutations in the RAS genes are frequent in human tumors, especially in pancreatic, colorectal, and non-small-cell lung cancers. Such mutations generally decrease the ability of Ras to hydrolyze GTP, maintaining the protein in a constitutively active GTP-bound form that drives uncontrolled cell proliferation. Efforts to develop drugs that target Ras oncoproteins have been unsuccessful. Recent emerging data suggest that Ras regulation is more complex than the scientific community has believed for decades. In this review, we summarize advances in the "textbook" view of Ras activation. We also discuss a novel type of Ras regulation that involves direct phosphorylation and dephosphorylation of Ras tyrosine residues. The discovery that pharmacological inhibition of the tyrosine phosphoprotein phosphatase SHP2 maintains mutant Ras in an inactive state suggests that SHP2 could be a novel drug target for the treatment of Ras-driven human cancers

    Src

    No full text
    corecore